精英家教网 > 初中数学 > 题目详情

【题目】如图,点M是直线y=2x+3上的动点,过点MMN垂直于x轴于点N,y轴上是否存在点P,使得△MNP为等腰直角三角形,则符合条件的点P有(提示:直角三角形斜边上的中线等于斜边的一半)(  )

A. 2 B. 3 C. 4 D. 5

【答案】C

【解析】

根据等腰直角三角形的定义,由题意,应分两类情况讨论:当MN为直角边时和当MN为斜边时点P的位置的求法.

M运动到(-1,1)时,ON=1,MN=1,

MNx轴,所以由ON=MN可知,(0,0)(0,1)就是符合条件的P点;

又当M运动到第三象限时,要MN=MP,且PMMN,设点M(x,2x+3),则有-x=-(2x+3),解得x=-3,所以点P坐标为(0,-3)

如若MN为斜边时,则∠ONP=45°,所以ON=OP,设点M(x,2x+3),则有-x=-(2x+3),化简得-2x=-2x-3,这方程无解,所以这时不存在符合条件的P点;

又当点M′在第二象限,M′N′为斜边时,这时N′P=M′P,M′N′P=45°,设点M′(x,2x+3),则OP=ON′,而OP=M′N′,∴有-x=(2x+3),解得x=-,这时点P的坐标为(0,-)

因此,符合条件的点P坐标是(0,0),(0,-),(0,-3),(0,1).

故答案选C,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在正八边形ABCDEFGH中,四边形BCFG的面积为20cm2 , 则正八边形的面积为cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是某同学对多项式(x24x+2)(x24x+6+4进行因式分解的过程.

解:设x24x=y

原式=y+2)(y+6+4 (第一步)

=y2+8y+16 (第二步)

=y+42(第三步)

=x24x+42(第四步)

回答下列问题:

1)该同学第二步到第三步运用了因式分解的_______

A.提取公因式

B.平方差公式

C.两数和的完全平方公式

D.两数差的完全平方公式

2)该同学因式分解的结果是否彻底?________.(填彻底不彻底)若不彻底,请直接写出因式分解的最后结果_________

3)请你模仿以上方法尝试对多项式(x22x)(x22x+2+1进行因式分解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为了估算河的宽度,我们可以在河对岸选定一个目标点P , 在近岸取点QS , 使点PQS共线且直线PS与河垂直,接着再过点S且与PS垂直的直线a上选择适当的点T , 确定PT与过点Q且垂直PS的直线b的交点R . 如果测得QS=45mST=90mQR=60m , 求河的宽度PQ

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,O为坐标系原点,A(3,0),B(3,1),C(0,1),将△OAB沿直线OB折叠,使得点A落在点D处,ODBC交于点E,则OD所在直线的解析式为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC和△ECD均为等边三角形,B、C、D三点在一直线上,AD、BE相交于点F,DF=3,AF=4,则线段FE的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD中,EAD延长线上一点,BEAC于点F , 交DC于点G , 则下列结论中错误的是(  )
A.△ABE∽△DGE
B.△CGB∽△DGE
C.△BCF∽△EAF
D.△ACD∽△GCF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把方程(x- )(x+ )+(2x-1)2=0化为一元二次方程的一般形式是(  )
A.
B.
C.
D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在五边形ABCDE中,∠B=90°,AB=BC=CD=1,AB∥CD,M是CD边的中点,点P由点A出发,按A→B→C→M的顺序运动.设点P经过的路程x为自变量,△APM的面积为y,则函数y的大致图象是( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案