精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,∠BAC=100°,DF,EG分别是AB,AC的垂直平分线,则∠DAE等于( )

A.50°
B.45°
C.30°
D.20°

【答案】D
【解析】根据线段的垂直平分线性质,可得AD=BD,AE=CE。故∠EAC=∠ECA,∠ABD=∠BAD。
因为∠BAC=100°,∠ABD+∠ACE=180°-100°=80°,
∴∠DAE=100°-∠BAD-∠EAC=20°。
所以答案是:D
【考点精析】掌握线段垂直平分线的判定和三角形的内角和外角是解答本题的根本,需要知道和一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】m+n=2mn=1,则m2+n2=______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为t(s).
(1)当动点P、Q同时运动2s时,则BP=cm,BQ=cm.
(2)当动点P、Q同时运动t(s)时,分别用含有t的式子表示;BP=cm,BQ=cm.
(3)当t为何值时,△PBQ是直角三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】-3+3=( )
A.0
B.6
C.3
D.-3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.
(1)求证:△ADC≌△CEB.
(2)AD=6cm,DE=4cm,求BE的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若n边形的每一个外角都等于60°,则n=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】P(m3m1)x轴上,则点P的坐标为( )

A. (0,-2) B. (20) C. (40) D. (0,-4)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.

(1)阅读填空

如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆.延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFGH与矩形ABCD等积.

理由:连接AH,EH.

∵AE为直径,∴∠AHE=90°,∴∠HAE+∠HEA=90°.

∵DH⊥AE,∴∠ADH=∠EDH=90°

∴∠HAD+∠AHD=90°

∴∠AHD=∠HED,∴△ADH∽

,即DH2=AD×DE.

又∵DE=DC

∴DH2= ,即正方形DFGH与矩形ABCD等积.

(2)操作实践

平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.

如图②,请用尺规作图作出与ABCD等积的矩形(不要求写具体作法,保留作图痕迹).

(3)解决问题三角形的“化方”思路是:先把三角形转化为等积的 (填写图形名称),再转化为等积的正方形.

如图③,△ABC的顶点在正方形网格的格点上,请作出与△ABC等积的正方形的一条边(不要求写具体作法,保留作图痕迹,不通过计算△ABC面积作图).

(4)拓展探究

n边形(n>3)的“化方”思路之一是:把n边形转化为等积的n﹣1边形,…,直至转化为等积的三角形,从而可以化方.

如图④,四边形ABCD的顶点在正方形网格的格点上,请作出与四边形ABCD等积的三角形(不要求写具体作法,保留作图痕迹,不通过计算四边形ABCD面积作图).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题
(1)已知 是有理数且满足: 是-27的立方根, ,求 的值;
(2)已知 ,求 的值.

查看答案和解析>>

同步练习册答案