精英家教网 > 初中数学 > 题目详情

【题目】实践与操作:我们在学习四边形的相关知识时,认识了平行四边形、矩形、菱形、正方形等一些特殊的四边形,下面我们用尺规作图的方法来体会它们之间的联系.如图,在ABCD中,AB=4,BC=6,∠ABC=60°,请完成下列任务:
(1)在图1中作一个菱形,使得点A、B为所作菱形的2个顶点,另外2个顶点在ABCD的边上;在图2中作一个菱形,使点B、D为所作菱形的2个顶点,另外2个顶点在ABCD的边上;(尺规作图,保留作图痕迹,不写作法)
(2)请在图形下方横线处直接写出你按(1)中要求作出的菱形的面积.

【答案】
(1)解:如图所示:


(2)解:如图1,作ABCD的高AH.

在直角△ABH中,∵AB=4,∠ABC=60°,

∴AH=ABsin60°=4× =2 ,BH=ABcos60°=4× =2,

∴S菱形ABEF=BEAH=4×2 =8

如图2,设BD与EF交于点O,作DM⊥BC于M,则CM=BH=2,DM=AH=2

在直角△BDM中,∵∠M=90°,

∴BD= = =2

设BF=x,CF=y,则DF=x,

由题意得

解得

∴OF= = =

∴S菱形ABEF= BDEF= ×2 × =


【解析】(1)如图1,在AD、BC上分别截取AF=BE=4,连结EF,则四边形ABEF是菱形;如图2,连结BD,作BD的垂直平分线,交AD于E,BC于F,则四边形BEDF是菱形;(2)如图1,作ABCD的高AH,根据菱形的面积=底×高列式计算即可;如图2,设BD与EF交于点O,作DM⊥BC于M,则CM=BH=2,DM=AH=2 .分别求出BD与EF,根据菱形的面积=两对角线乘积的一半列式计算即可.
【考点精析】解答此题的关键在于理解平行四边形的性质的相关知识,掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分,以及对菱形的性质的理解,了解菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校九年级数学模拟测试中,六名学生的数学成绩如下(单位:分):110,106,109,111,108,110,下列关于这组数据描述正确的是(
A.众数是110
B.方差是16
C.平均数是109.5
D.极差是6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在梯形ABCD中,AD∥BC,AB=AD=5,tan∠DBC= .点E为线段BD上任意一点(点E与点B,D不重合),过点E作EF∥CD,与BC相交于点F,连接CE.设BE=x,y=

(1)求BD的长;
(2)如果BC=BD,当△DCE是等腰三角形时,求x的值;
(3)如果BC=10,求y关于x的函数解析式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,E是CD的延长线上一点,BE与AD交于点F,若ED:DC=2:3,△DEF的面积为8,则平行四边形ABCD的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国古代典籍《庄子天下篇》中曾说过一句话:“一尺之棰,日取其半,万世不竭”,现有一根长为1尺的木杆,第1次截取其长度的一半,第2次截取其第1次剩下长度的一半,第3次截取其第2次剩下长度的一半,如此反复,则第99次截取后,此木杆剩下的长度为(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题背景:数学活动课上老师出示问题,如图1,有边长为a的正方形纸片一张,三边长分别为a、b、c的全等直角三角形纸片两张,且b .请你用这三张纸片拼出一个图案,并将这个图案的某部分进行旋转或平移变换之后,提出一个问题(可以添加其他条件,例如可以给出a、b的值等等).
解决问题:

下面是两个学习小组拼出图案后提出的问题,请你解决他们提出的问题.
(1)“爱心”小组提出的问题是:如图2,将△DFC绕点F逆时针旋转,使点D恰好落在AD边上的点D′处,猜想此时四边形AEFD′是什么特殊四边形,并加以证明;
(2)“希望”小组提出的问题是:如图3,点M为BE中点,将△DCF向左平移至DF恰好过点M时停止,且补充条件a=6,b=2,求△DCF平移的距离.
自主创新:
(3)请你仿照上述小组的同学,在下面图4的空白处用实线画出你拼出的图案,用虚线画出变换图,并在横线处写出你提出的问题.(不必解答)
你提出的问题:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解答题
(1)计算:( 0+ ﹣|﹣3|+tan45°;
(2)计算:(x+2)2﹣2(x﹣1).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与x轴交于A、B两点,与y轴交于C(0,3),A点在原点的左侧,B点的坐标为(3,0).点P是抛物线上一个动点,且在直线BC的上方.

(1)求这个二次函数的表达式.
(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
(3)当点P运动到什么位置时,四边形 ABPC的面积最大,并求出此时点P的坐标和四边形ABPC的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B,E在反比例函数y= 的图像上,OA=1,OC=6,试求出正方形ADEF的边长.

查看答案和解析>>

同步练习册答案