精英家教网 > 初中数学 > 题目详情

【题目】如图,已知在梯形ABCD中,AD∥BC,AB=AD=5,tan∠DBC= .点E为线段BD上任意一点(点E与点B,D不重合),过点E作EF∥CD,与BC相交于点F,连接CE.设BE=x,y=

(1)求BD的长;
(2)如果BC=BD,当△DCE是等腰三角形时,求x的值;
(3)如果BC=10,求y关于x的函数解析式,并写出自变量x的取值范围.

【答案】
(1)

解:如图1,过A作AH⊥BD于H,

∵AD∥BC,AB=AD=5,

∴∠ABD=∠ADB=∠DBC,BH=HD,

在Rt△ABH中,

∵tan∠ABD=tan∠DBC=

∴cos∠ABD=

∴BH=DH=4,

∴BD=8;


(2)

解:∵△DCE是等腰三角形,且BC=BD=8,

∴①如图2,

当CD=DE时,即:CD=DE=BD﹣BE=8﹣x,

过点D作DG⊥BC于G,

在Rt△BDG中,tan∠DBC= ,BD=8,

∴DG= BD= ,BG= BD=

∴CG=8﹣BG=

在Rt△CDG中,根据勾股定理得,DG2+CG2=CD2

∴( 2+( 2=(8﹣x)2

∴x=8+ (舍)或x=8﹣

②如图3,

当CE=CD时,

过点C作CG⊥BD,

∴DG=EG= DE,

在Rt△BCG中,BC=8,tan∠DBC=

∴BG=

∴DG=BD﹣BG=

∴x=BE=BD﹣DE=BD﹣2DG=


(3)

解:∵BF=x,BC=10,

∴FC=10﹣x,

∵EF∥DC,

∴△FEB∽△CDB,

= =﹣ x2+ x(0<x<8)


【解析】(1)过A作AH⊥BD于H,再根据AD∥BC,AB=AD=5,可得∠ABD=∠ADB=∠DBC,BH=HD,再根据tan∠ABD=tan ,计算出BH=DH=4,进而得到BD=8;(2)分两种情况用锐角三角函数计算即可得出结论.(3)首先利用平行线的性质得出△FEB∽△CDB,即可得出y与x的函数关系式;
【考点精析】通过灵活运用梯形的定义和直角梯形,掌握一组对边平行,另一组对边不平行的四边形是梯形.两腰相等的梯形是等腰梯形;一腰垂直于底的梯形是直角梯形即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知函数f(x)= x2+ax2+bx﹣ (a>0,b∈R),f(x)在x=x1和x=x2处取得极值,且|x1﹣x2|= ,曲线y=f(x)在(1,f(1))处的切线与直线x+y=0垂直. (Ⅰ)求f(x)的解析式;
(Ⅱ)证明关于x的方程(k2+1)ex﹣1﹣kf′(x)=0至多只有两个实数根(其中f′(x)是f(x)的导函数,e是自然对数的底数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某大型购物商场在一楼和二楼之间安装自动扶梯AC,截面如图所示,一楼和二楼地面平行(即AB所在的直线与CD平行),层高AD为8米,∠ACD=20°,为使得顾客乘坐自动扶梯时不至于碰头,A、B之间必须达到一定的距离. (参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)

(1)要使身高2.26米的姚明乘坐自动扶梯时不碰头,那么A,B之间的距离至少要多少米?(精确到0.1米)
(2)如果自动扶梯改为由AE,EF,FC三段组成(如图中虚线所示),中间段EF为平台(即EF∥DC),AE段和FC段的坡度i=1:2,求平台EF的长度.(精确到0.1米)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在四边形ABCD中,∠BAD=∠CDA,AB=DC= ,CE=a,AC=b,求证:
(1)△DEC∽△ADC;
(2)AEAB=BCDE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点D,E分别是边AB,AC的中点,设 = =
(1)求向量 (用向量 的式子表示).
(2)在图中作出向量 在向量 方向上的分向量(不要求写作法,但要指出所作图中表示结论的向量).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+4与x轴的正半轴相交于点A,与y轴相交于点B,点C在线段OA上,点D在此抛物线上,CD⊥x轴,且∠DCB=∠DAB,AB与CD相交于点E.

(1)求证:△BDE∽△CAE;
(2)已知OC=2,tan∠DAC=3,求此抛物线的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,菱形ABCD,对角线AC、BD交于点O,BE⊥DC,垂足为点E,交AC于点F.求证:
(1)△ABF∽△BED;
(2) =

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】实践与操作:我们在学习四边形的相关知识时,认识了平行四边形、矩形、菱形、正方形等一些特殊的四边形,下面我们用尺规作图的方法来体会它们之间的联系.如图,在ABCD中,AB=4,BC=6,∠ABC=60°,请完成下列任务:
(1)在图1中作一个菱形,使得点A、B为所作菱形的2个顶点,另外2个顶点在ABCD的边上;在图2中作一个菱形,使点B、D为所作菱形的2个顶点,另外2个顶点在ABCD的边上;(尺规作图,保留作图痕迹,不写作法)
(2)请在图形下方横线处直接写出你按(1)中要求作出的菱形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF=cm.

查看答案和解析>>

同步练习册答案