精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,若AC=4,BC=3,AB=5,则△ABC的内切圆半径R=_____

【答案】1.

【解析】

先根据已知条件得出ABC为直角三角形,再根据三角形的面积公式计算出ABC的面积,再连接AO,BO,CO,SABC=SAOB+SBOC+SAOC,设内切圆半径为r,再根据面积公式计算即可得出结论.

AB=5,AC=4,BC=3,32+42=52

AB2=AC2+BC2

ABC为直角三角形,

SABC=×AC×BC=×4×3=6,

ABC的内切圆圆心为O,连接AO,BO,CO,

SABC=SAOB+SBOC+SAOC

设内切圆半径为r,则ABr+BCr+ACr=6,

5r+3r+4r=6,

解得r=1.

故答案为1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,IABC的内心,AI向延长线和△ABC的外接圆相交于点D,连接BI,BD,DC下列说法中错误的一项是

A.线段DB绕点D顺时针旋转一定能与线段DC重合

B.线段DB绕点D顺针旋转一定能与线段DI熏合

C.CAD绕点A顺时针旋转一定能与DAB重合

D.线段ID绕点I顺时针旋转一定能与线段IB重合

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点P在一次函数y=kx+bkb为常数,且k0b0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上.

1k的值是

2)如图,该一次函数的图象分别与x轴、y轴交于AB两点,且与反比例函数y=图象交于CD两点(点C在第二象限内),过点CCE⊥x轴于点E,记S1为四边形CEOB的面积,S2△OAB的面积,若=,则b的值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是O的直径,C,D是O上的点,且OCBD,AD分别与BC,OC相交于点E,F,则下列结论:①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的____(把你认为正确结论的序号都填上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,CD切⊙O于点C,与BA的延长线交于点D,OEAB交⊙O于点E,连接CA、CE、CB,CEAB于点G,过点AAFCE于点F,延长AFBC于点P.

(Ⅰ)求∠CPA的度数;

(Ⅱ)连接OF,若AC=D=30°,求线段OF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一段圆弧与长度为1的正方形网格的交点是A、B、C.

(1)请完成以下操作:

①以点O为原点,垂直和水平方向为轴,网格边长为单位长,建立平面直角坐标系;

②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD;

(2)请在(1)的基础上,完成下列填空:⊙D的半径为__________;点(6,–2)在⊙D__________;(填”、“”、“”)ADC的度数为__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,点D是半圆O上一点,点C 的中点,CEAB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CECB于点PQ,连接AC

1)求证:GPGD

2)求证:P是线段AQ的中点;

3)连接CD,若CD2BC4,求O的半径和CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】李刚和常明两人在数学活动课上进行折纸创编活动.李刚拿起一张准备好的长方形纸片对常明说:“我现在折叠纸片(图①),使点D落在AB边的点F处,得折痕AE,再折叠,使点C落在AE边的点G处,此时折痕恰好经过点B,如果AD=,那么AB长是多少?常明说;简单,我会. AB应该是_____”.

常明回答完,又对李刚说:你看我的创编(图②),与你一样折叠,可是第二次折叠时,折痕不经过点B,而是经过了AB边上的M点,如果AD=,测得EC=3BM,那么AB长是多少?李刚思考了一会,有点为难,聪明的你,你能帮忙解答吗?AB=_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,建筑物AB的高为6cm,在其正东方向有个通信塔CD,在它们之间的地面点M(B,M,D三点在一条直线上)处测得建筑物顶端A、塔项C的仰角分别为37°60°,在A处测得塔顶C的仰角为30°,则通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,=1.73,精确到0.1m)

查看答案和解析>>

同步练习册答案