【题目】如图1,菱形ABCD中,∠B=60°,动点P以每秒1个单位的速度自点A出发沿线段AB运动到点B,同时动点Q以每秒2个单位的速度自点B出发沿折线B﹣C﹣D运动到点D.图2是点P、Q运动时,△BPQ的面积S随时间t变化关系图象,则a的值是( )
A.2B.2.5C.3D.2
科目:初中数学 来源: 题型:
【题目】(1)尝试探究
如图1,等腰Rt△ABC的两个顶点B,C在直线MN上,点D是直线MN上一个动点(点D在点C的右边),BC=3,BD=m,在△ABC同侧作等腰Rt△ADE,∠ABC=∠ADE=90°,EF⊥ MN于点F,连结CE.
①求DF的长;
②在判断AC⊥CE是否成立时,小明同学发现可以由以下两种思路解决此问题:
思路一:先证CF=EF,求出∠ECF=45°,从而证得结论成立.
思路二:先求DF,EF的长,再求CF的长,然后证AC2+CE2=AE2,从而证得结论成立.
请你任选一种思路,完整地书写本小题的证明过程.(如用两种方法作答,则以第一种方法评分)
(2)拓展探究
将(1)中的两个等腰直角三角形都改为有一个角为的直角三角形,如图2, ∠ABC=∠ADE=90°,∠BAC=∠DAE=30°,BC=3,BD=m,当4≤m≤6时,求CE长的范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知函数y=x+2的图象与函数y=(k≠0)的图象交于A、B两点,连接BO并延长交函数y=(k≠0)的图象于点C,连接AC,若△ABC的面积为8.则k的值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校九年级共有80名同学参与数学科托底训练.其中(1)班30人,(2)班25人,(3)班25人,吕老师在托底训练后对这些同学进行测试,并对测试成绩进行整理,得到下面统计图表.
(1)表格中的m落在________组;(填序号)
①40≤x<50, ②50≤x<60, ③60≤x<70,
④70≤x<80, ⑤80≤x<90, ⑥90≤x≤100.
(2)求这80名同学的平均成绩;
(3)在本次测试中,(2)班小颖同学的成绩是70分,(3)班小榕同学的成绩是74分,这两位同学成绩在自己所在班级托底同学中的排名,谁更靠前?请简要说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有( )
①△CMP∽△BPA;
②四边形AMCB的面积最大值为10;
③当P为BC中点时,AE为线段NP的中垂线;
④线段AM的最小值为2;
⑤当△ABP≌△ADN时,BP= 4-4.
A. 1个B. 2个C. 4个D. 3个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转.如图2,从侧面看,踏板静止DE上的线段AB重合,测得BE长为0.21m,当踏板连杆绕着A旋转到AC处时,测得∠CAB=42°,点C到地面的距离CF长为0.52m,当踏板连杆绕着点A旋转到AG处∠GAB=30°时,求点G距离地面的高度GH的长.(精确到0.1m,参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.
(1)试判断直线BC与⊙O的位置关系,并说明理由;
(2)若BD=2,BF=2,求阴影部分的面积(结果保留π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】等腰三角形ABC中,AB=AC,D、E分别是AC、AB上两点,连结BD、CE,BD=CE,且BC>BD,∠A=48°,∠BCE=36°,则∠ADB的度数等于________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC内接于⊙O,AB是直径,点D在⊙O上,OD∥BC,过点D作DE⊥AB,垂足为E,连接CD交OE边于点F.
(1)求证:△DOE∽△ABC;
(2)求证:∠ODF=∠BDE;
(3)连接OC.设△DOE的面积为S.sinA=,求四边形BCOD的面积(用含有S的式子表示)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com