【题目】如图,已知抛物线与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.
(1)直接写出a的值、点A的坐标及抛物线的对称轴;
(2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P的坐标;
(3)证明:当直线l绕点D旋转时,均为定值,并求出该定值.
【答案】(1)a=,A(﹣,0),抛物线的对称轴为x=;(2)点P的坐标为(,2)或(,0)或(,﹣4);(3).
【解析】
试题分析:(1)由点C的坐标为(0,3),可知﹣9a=3,故此可求得a的值,然后令y=0得到关于x的方程,解关于x的方程可得到点A和点B的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;
(2)利用特殊锐角三角函数值可求得∠CAO=60°,依据AE为∠BAC的角平分线可求得∠DAO=30°,然后利用特殊锐角三角函数值可求得OD=1,则可得到点D的坐标.设点P的坐标为(,a).依据两点的距离公式可求得AD、AP、DP的长,然后分为AD=PA、AD=DP、AP=DP三种情况列方程求解即可;
(3)设直线MN的解析式为y=kx+1,接下来求得点M和点N的横坐标,于是可得到AN的长,然后利用特殊锐角三角函数值可求得AM的长,最后将AM和AN的长代入化简即可.
试题解析:(1)∵C(0,3),∴﹣9a=3,解得:a=.
令y=0得:,∵a≠0,∴,解得:x=﹣或x=,∴点A的坐标为(﹣,0),B(,0),∴抛物线的对称轴为x=.
(2)∵OA=,OC=3,∴tan∠CAO=,∴∠CAO=60°.
∵AE为∠BAC的平分线,∴∠DAO=30°,∴DO=AO=1,∴点D的坐标为(0,1).
设点P的坐标为(,a).
依据两点间的距离公式可知:AD2=4,AP2=12+a2,DP2=3+(a﹣1)2.
当AD=PA时,4=12+a2,方程无解.
当AD=DP时,4=3+(a﹣1)2,解得a=2或a=0,∴点P的坐标为(,2)或(,0).
当AP=DP时,12+a2=3+(a﹣1)2,解得a=﹣4,∴点P的坐标为(,﹣4).
综上所述,点P的坐标为(,2)或(,0)或(,﹣4).
(3)设直线AC的解析式为y=mx+3,将点A的坐标代入得:,解得:m=,∴直线AC的解析式为.
设直线MN的解析式为y=kx+1.
把y=0代入y=kx+1得:kx+1=0,解得:x=,∴点N的坐标为(,0),∴AN==.
将与y=kx+1联立解得:x=,∴点M的横坐标为.
过点M作MG⊥x轴,垂足为G.则AG=.
∵∠MAG=60°,∠AGM=90°,∴AM=2AG==,∴= == =.
科目:初中数学 来源: 题型:
【题目】如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点.∠APC=∠CPB=60°.
(1)判断△ABC的形状: ;
(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;
(3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/s的速度移动,点Q沿DA边从点D开始向点A以1cm/s的速度移动,如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤6),那么:
(1)当t为何值时,△QAP是等腰直角三角形?
(2)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),在Rt△ABC中,∠A=90°,AB=AC=4,D、E分别是AB,AC的中点.若等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,如图(2),设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.
(1)求证:BD1=CE1;
(2)当∠CPD1=2∠CAD1时,则旋转角为α= (直接写结果)
(3)连接PA,△PAB面积的最大值为 (直接写结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.请根据图中的信息解答下列问题:
(1)在这次调查中,一共调查了 名学生,扇形统计图中,C等级对应的扇形圆心角是 °.
(2)补全条形统计图.
(3)该年级共有900人,估计该年级足球测试成绩为D等的人数为 人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.
(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;
(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,把一张长方形卡片ABCD放在每格宽度为12mm的横格纸中,恰好四个顶点都在横格线上,已知∠α=36°,则长方形卡片的周长为_____.(精确到1mm)(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ΔABC中,AB=AC,若将ΔABC绕点C顺时针180得到ΔFEC。
(1)试猜想AE与BF有何关系,并说明理由;
(2)若ΔABC的面积为3cm2,求四边形ABFE的面积;
(3)当∠ACB为多少度时,四边形ABFE为矩形?说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,我国的一艘海监船在钓鱼岛A附近沿正东方向航行,船在B点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点,此时钓鱼岛A在船的北偏东30°方向.请问船继续航行多少海里与钓鱼岛A的距离最近?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com