【题目】如图1,抛物线交
正半轴于点
,将抛物线
先向右平移3个单位,再向上平移3个单位得到抛物线
,
与
交于点
,直线
交
于点
.
(1)求抛物线的解析式;
(2)点是抛物线
上
间的一点,作
轴交抛物线
于点
,连接
,
.设点
的横坐标为
,当
为何值时,使
的面积最大,并求出最大值;
(3)如图2,将直线向下平移,交抛物线
于点
,
,交抛物线
于点
,
,则
的值是否为定值,证明你的结论.
【答案】(1);(2)当
时,
有最大值,最大值为6;(3)
的值是定值1,见解析
【解析】
(1)先将抛物线化为顶点式,由平移规律“上加下减,左加右减”可直接写出抛物线M2的解析式;
(2)分别求出点A,点B,点C的坐标,求出m的取值范围,再用含m的代数式表示出△CPQ的面积,可用函数的思想求出其最大值;
(3)设直线OB向下平移k个单位长度得到直线EH,分别求出点E,F,G,H的横坐标,分别过G,H作轴的平行线,过E,F作
轴的平行线,构造相似三角形△GEM与△HFN,可通过相似三角形的性质求出
的值为1.
解:(1),
将其先向右平移3个单位,再向上平移3个单位的解析式为:
;
(2)抛物线
与
交于点
,
,
解得:,
,
将点代入
,
得:,
,
抛物线
与直线
交于点
,
,
解得:,
,
,
点
的横坐标为
,
点
,
则,
,
,
,
在中,当
时,
,
,
,
,
,
在
中,
根据二次函数的图象及性质可知,当时,
有最大值,最大值为6;
(3)的值是定值1.理由如下:
设将直线向下平移
个单位长度得到直线
,
则,
令
,
解得:,
,
,
,
令,
解得:,
,
,
,
,
,
分别过,
作
轴的平行线,过
,
作
轴的平行线,交点分别为
,
,
,
则,
,
,
,
,
的值是定值1.
科目:初中数学 来源: 题型:
【题目】某商场秋季计划购进一批进价为每件40元的T恤进行销售.
(1)根据销售经验,应季销售时,若每件T恤的售价为60元,可售出400件;若每件T恤的售价每提高1元,销售量相应减少10件.
①假设每件T恤的售价提高x元,那么销售每件T恤所获得的利润是____________元,销售量是_____________________件(用含x的代数式表示);
②设应季销售利润为y元,请写y与x的函数关系式;并求出应季销售利润为8000元时每件T恤的售价.
(2)根据销售经验,过季处理时,若每件T恤的售价定为30元亏本销售,可售出50件;若每件T恤的售价每降低1元,销售量相应增加5条,
①若剩余100件T恤需要处理,经过降价处理后还是无法销售的只能积压在仓库,损失本金;若使亏损金额最小,每件T恤的售价应是多少元?
②若过季需要处理的T恤共m件,且100≤m≤300,过季亏损金额最小是__________________________元(用含m的代数式表示).(注:抛物线顶点是
)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A为反比例函数y=(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=4.连接OA、AB,且OA=AB=2
.
(1)求k的值;
(2)过点B作BC⊥OB,交反比例函数y=(x>0)的图象于点C.
①连接AC,求△ABC的面积;
②在图上连接OC交AB于点D,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有A、B两个不透明袋子,分别装有3个除颜色外完全相同的小球.其中,A袋装有2个白球,1个红球;B袋装有2个红球,1个白球.
(1)将A袋摇匀,然后从A袋中随机取出一个小球,则摸出小球是白色的概率为 ;
(2)小华和小林商定了一个游戏规则:从摇匀后的A,B两袋中随机摸出一个小球,摸出的这两个小球,若颜色相同,则小林获胜;若颜色不同,则小华获胜.请用列表或画出树状图的方法说明这个游戏规则对双方是否公平.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
(1)如图(1),连接AF、CE.
①四边形AFCE是什么特殊四边形?说明理由;
②求AF的长;
(2)如图(2),动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,CD切⊙O于点C,BE⊥CD于E,连接AC,BC.
(1)求证:BC平分∠ABE;
(2)若⊙O的半径为3,cosA=,求CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,Rt△ABC中,∠BAC=90°,四边形ADEF是矩形,点B、C分别在边AD、AF上,且BC∥DF.
(1)求证:,BD⊥CF;
(2)当△ABC绕点A逆时针旋转到图2的位置时,(1)中的结论还成立吗?若成立,请证明,若不成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学开设的体育选修课有篮球、足球、排球、羽毛球、乒乓球,学生可以根据自己的爱好选修其中1门.某班班主任对全班同学的选课情况进行了调查统计,制成了两幅不完整的统计图(图(1)和图(2)):
(1)请你求出该班的总人数,并补全条形图(注:在所补小矩形上方标出人数);
(2)在该班团支部4人中,有1人选修排球,2人选修羽毛球,1人选修乒乓球.如果该班班主任要从他们4人中任选2人作为学生会候选人,那么选出的两人中恰好有1人选修排球、1人选修羽毛球的概率是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com