精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系xoy中,曲线C的参数方程为 (t为参数),以O为极点x轴的正半轴为极轴建极坐标系,直线l的极坐标方程为ρ(cosθ﹣sinθ)=4,且与曲线C相交于A,B两点. (Ⅰ)在直角坐标系下求曲线C与直线l的普通方程;
(Ⅱ)求△AOB的面积.

【答案】解:(Ⅰ)已知曲线C的参数方程为 (t为参数),消去参数得y2=4x, 直线l的极坐标方程为ρ(cosθ﹣sinθ)=4,由x=ρcosθ,y=ρsinθ得普通方程为x﹣y﹣4=0;
(Ⅱ)已知抛物线y2=4x与直线x﹣y﹣4=0相交于A,B两点,
,得 ,O到直线l的距离
所以△AOB的面积为
【解析】(Ⅰ)利用三种方程的转化方法,求曲线C与直线l的普通方程;(Ⅱ)求出|AB|,O到直线l的距离,即可求△AOB的面积.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1所示,将矩形OABC置于平面直角坐标系中,点A,C分别在x,y轴的正半轴上,已知点B(4,2),将矩形OABC翻折,使得点C的对应点P恰好落在线段OA(包括端点O,A)上,折痕所在直线分别交BC、OA于点D、E;若点P在线段OA上运动时,过点P作OA的垂线交折痕所在直线于点Q.

(1)求证:CQ=QP
(2)设点Q的坐标为(x,y),求y关于x的函数关系式及自变量x的取值范围;
(3)如图2,连结OQ,OB,当点P在线段OA上运动时,设三角形OBQ的面积为S,当x取何值时,S取得最小值,并求出最小值;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数f(x)=ln(x+1)+ax2 , a>0.
(1)讨论函数f(x)的单调性;
(2)若函数f(x)在区间(﹣1,0)有唯一零点x0 , 证明:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙、丙三人投掷飞镖,他们的成绩(环数)如下面的频数条统计图所示.则甲、乙、丙三人的训练成绩方差S2 , S2 , S2的大小关系是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设Sn是数列{an}的前n项和,an>0,且4Sn=an(an+2). (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn= ,Tn=b1+b2+…+bn , 求证:Tn

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知曲线C上任意一点M到点F(0,1)的距离比它到直线l:y=﹣2的距离小1. (Ⅰ)求曲线C的方程;
(Ⅱ)斜率不为0且过点P(2,2)的直线m与曲线C交于A,B两点,设 ,当△AOB的面积为4 时(O为坐标原点),求λ的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在“新零售”模式的背景下,某大型零售公司为推广线下分店,计划在S市的A区开设分店.为了确定在该区开设分店的个数,该公司对该市已开设分店的其他区的数据作了初步处理后得到下列表格.记x表示在各区开设分店的个数,y表示这x个分店的年收入之和.

x(个)

2

3

4

5

6

y(百万元)

2.5

3

4

4.5

6

(Ⅰ)该公司已经过初步判断,可用线性回归模型拟合y与x的关系,求y关于x的线性回归方程y=
(Ⅱ)假设该公司在A区获得的总年利润z(单位:百万元)与x,y之间的关系为z=y﹣0.05x2﹣1.4,请结合(Ⅰ)中的线性回归方程,估算该公司应在A区开设多少个分店时,才能使A区平均每个分店的年利润最大?
参考公式: = x+a, = = ,a=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面给出四种说法: ①用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好;
②命题P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;
③设随机变量X服从正态分布N(0,1),若P(x>1)=p,则P(﹣1<X<0)= ﹣p
④回归直线一定过样本点的中心( ).
其中正确的说法有(请将你认为正确的说法的序号全部填写在横线上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某一公路的道路维修工程,准备从甲、乙两个工程队选一个队单独完成.根据两队每天的工程费用和每天完成的工程量可知,若由两队合做此项维修工程,6天可以完成,共需工程费用385200元,若单独完成此项维修工程,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元,从节省资金的角度考虑,应该选择哪个工程队?

查看答案和解析>>

同步练习册答案