精英家教网 > 初中数学 > 题目详情

【题目】在“新零售”模式的背景下,某大型零售公司为推广线下分店,计划在S市的A区开设分店.为了确定在该区开设分店的个数,该公司对该市已开设分店的其他区的数据作了初步处理后得到下列表格.记x表示在各区开设分店的个数,y表示这x个分店的年收入之和.

x(个)

2

3

4

5

6

y(百万元)

2.5

3

4

4.5

6

(Ⅰ)该公司已经过初步判断,可用线性回归模型拟合y与x的关系,求y关于x的线性回归方程y=
(Ⅱ)假设该公司在A区获得的总年利润z(单位:百万元)与x,y之间的关系为z=y﹣0.05x2﹣1.4,请结合(Ⅰ)中的线性回归方程,估算该公司应在A区开设多少个分店时,才能使A区平均每个分店的年利润最大?
参考公式: = x+a, = = ,a=

【答案】解:(Ⅰ) =4, =4, = = =0.85,a= =4﹣4×0.85=0.6, ∴y关于x的线性回归方程y=0.85x+0.6.
(Ⅱ)z=y﹣0.05x2﹣1.4=﹣0.05x2+0.85x﹣0.8,
A区平均每个分店的年利润t= =﹣0.05x﹣ +0.85=﹣0.01(5x+ )+0.85,
∴x=4时,t取得最大值,
故该公司应在A区开设4个分店时,才能使A区平均每个分店的年利润最大
【解析】(Ⅰ)求出回归系数,可得y关于x的线性回归方程; (Ⅱ)求出A区平均每个分店的年利润,利用基本不等式,可得结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】利用如图算法在平面直角坐标系上打印一系列点,则打印的点在圆x2+y2=25内的个数为(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将圆 为参数)上的每一点的横坐标保持不变,纵坐标变为原来的 倍,得到曲线C.
(1)求出C的普通方程;
(2)设直线l:x+2y﹣2=0与C的交点为P1 , P2 , 以坐标原点为极点,x轴正半轴为极轴建立极坐标系, 求过线段P1P2的中点且与l垂直的直线的极坐标方程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,曲线C的参数方程为 (t为参数),以O为极点x轴的正半轴为极轴建极坐标系,直线l的极坐标方程为ρ(cosθ﹣sinθ)=4,且与曲线C相交于A,B两点. (Ⅰ)在直角坐标系下求曲线C与直线l的普通方程;
(Ⅱ)求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(Ⅰ)如果关于x的不等式|x+3|+|x﹣2|<a的解集不是空集,求参数a的取值范围; (Ⅱ)已知正实数a,b,且h=min{a, },求证:0<h≤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某厂家为了解销售轿车台数与广告宣传费之间的关系,得到如表统计数据表:根据数据表可得回归直线方程 ,其中 ,据此模型预测广告费用为9万元时,销售轿车台数为(

广告费用x(万元)

2

3

4

5

6

销售轿车y(台数)

3

4

6

10

12


A.17
B.18
C.19
D.20

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标系xoy中,已知点P(0, ),曲线C的参数方程为 (φ为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ= . (Ⅰ)判断点P与直线l的位置关系并说明理由;
(Ⅱ)设直线l与曲线C的两个交点分别为A,B,求 + 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】执行如图所示的程序框图,若输入A的值为2.5,则输出的P值为(
A.6
B.7
C.8
D.9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有(  )
A.9天
B.11天
C.13天
D.22天

查看答案和解析>>

同步练习册答案