【题目】如果过抛物线与y的交点作y轴的垂线与该抛物线有另一个交点,并且这两点与该抛物线的顶点构成正三角形,那么我们称这个抛物线为正三角抛物线.
(1)抛物线 正三角抛物线;(填“是”或“不是”)
(2)如图,已知二次函数(m > 0)的图像是正三角抛物线,它与x轴交于A、B两点(点A在点B的左侧),点E在y轴上,当∠AEB=2∠ABE时,求出点E的坐标.
【答案】(1)不是;(2)E点的坐标为(0, )或(0, ).
【解析】分析:(1)根据正三角抛物线的定义判断即可;(2)由正三角抛物线的定义求出m的值,而后求出点A、B的坐标,连接BE,得到,最后由勾股定理求解即可.
详解:(1)不是;∵,∴顶点坐标D(),与y轴交点为原点O(0,0),当y=0时, =0,解得x=0或 ,∴抛物线与x轴的另一交点B(,0), ∴OB=,OD= , ∵OD≠OB, ∴抛物线不是正三角抛物线.
(2)设抛物线与y轴交于点C,顶点为D,过点C作CM⊥y轴交抛物线于点M.
C(0,3m2) D(m,4m2) M(2m,3m2)
易知: 解得.
∴A(,0) B(,0).
连接BE交抛物线对称轴于点H,连接AH,则AH=BH,
∴AE=AH.
由,设, ,(h > 0)
由勾股定理得: ,解得:
E点的坐标为(0, )或(0, ).
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y1=2x2与坐标轴交于A、B两点,与双曲线y2=(x>0)交于点C,过点C作CD⊥x轴,且OA=AD,则以下结论错误的是( )
A. 当x>0时,y1随x的增大而增大,y2随x的增大而减小;
B. k=4
C. 当0<x<2时,y1<y2
D. 当x=4时,EF=4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线分别交两轴于点,点的横坐标为4,点在线段上,且.
(1)求点的坐标;
(2)求直线的解析式;
(3)在平面内是否存在这样的点,使以为顶点的四边形为平行四边形?若存在,请求出点的坐标;若不存在,不必说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A,B,C三点在⊙O上,直径BD平分∠ABC,过点D作DE∥AB交弦BC于点E,在BC的延长线上取一点F,使得EFDE.
(1)求证:DF是⊙O的切线;
(2)连接AF交DE于点M,若 AD4,DE5,求DM的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料:小天在学习锐角三角函数中遇到这样一个问题:在Rt△ABC中,∠C=90°,∠B=22.5°,则tan22.5°=
小天根据学习几何的经验,先画出了几何图形(如图1),他发现22.5°不是特殊角,但它是特殊角45°的一半,若构造有特殊角的直角三角形,则可能解决这个问题.于是小天尝试着在CB边上截取CD=CA,连接AD(如图2),通过构造有特殊角(45°)的直角三角形,经过推理和计算使问题得到解决.
(1)请回答:tan22.5°= .
(2)解决问题:
如图3,在等腰△ABC中,AB=AC,∠A=30°,请借助△ABC构造出15°的角,并计算tan15°值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.
(1)求证:BD=EC;
(2)若∠E=50°,求∠BAO的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线y=kx+3(k<0)分别交x轴、y轴于A、B两点,线段OA上有一动点P由原点O向点A运动,速度为每秒1个单位长度,过点P作x轴的垂线交直线AB于点C,设运动时间为t秒.
(1)当k=-1时,线段OA上另有一动点Q由点A向点O运动,它与点P以相同速度同时出发,当点P到达点A时两点同时停止运动(如图1).
①直接写出t=1秒时C、Q两点的坐标;
②若以Q、C、A为顶点的三角形与△AOB相似,求t的值.
(2)当k=时,设以C为顶点的抛物线y=(x+m)2+n与直线AB的另一交点为D(如图2),
①求CD的长;
②设△COD的OC边上的高为h,当t为何值时,h的值最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数轴上点A、C表示的数为﹣14、4,甲、乙两点分别从A、C两点出发,同时相向而行,已知甲的速度为4个单位/秒,乙的速度为3个单位/秒.
(1)求相遇点表示的数;
(2)数轴上有一点B表示的数为﹣4,甲到达点C后调头返回,求运动多少秒后,甲、乙两点到B点的距离相等.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com