精英家教网 > 初中数学 > 题目详情

【题目】如图,中,.从点 出发,沿着运动,速度为个单位/,在点运动的过程中,以为圆心的圆始终与斜边相切,设⊙的面积为,点的运动时间为)(.

1)当时, ;(用含的式子表示)

2)求的函数表达式;

3)在⊙P运动过程中,当⊙P与三角形ABC的另一边也相切时,直接写出t的值.

【答案】(1)7-t(2)3

【解析】

1)先判断出点PBC上,即可得出结论;

2)分点P在边ACBC上两种情况:利用相似三角形的性质得出比例式建立方程求解即可得出结论;

3)分点P在边ACBC上两种情况:借助(2)求出的圆P的半径等于PC,建立方程求解即可得出结论.

1)∵AC=4BC=3,∴AC+BC=7

4t7,∴点P在边BC上,∴BP=7t

故答案为:7t

2)在RtABC中,AC=4BC=3,根据勾股定理得:AB=5,由运动知,AP=t,分两种情况讨论:

①当点P在边AC上时,即:0t4,如图1,记⊙P与边AB的切点为H,连接PH,∴∠AHP=90°=ACB

∵∠A=A,∴△APH∽△ACB,∴,∴,∴PHt,∴Sπt2

②当点P在边BC上时,即:4t7,如图,记⊙P与边AB的切点为G,连接PG,∴∠BGP=90°=C

∵∠B=B,∴△BGP∽△BCA,∴,∴,∴PG7t),∴Sπ7t2

综上所述:S

3)分两种情况讨论:

①当点P在边AC上时,即:0t4,由(2)知,⊙P的半径PHt

∵⊙P与△ABC的另一边相切,即:⊙P和边BC相切,∴PC=PH

PC=4t,∴4tt,∴t秒;

②当点P在边BC上时,即:4t7,由(2)知,⊙P的半径PG7t).

∵⊙P与△ABC的另一边相切,即:⊙P和边AC相切,∴PC=PG

PC=t4,∴t47t),∴t秒.

综上所述:在⊙P运动过程中,当⊙P与三角形ABC的另一边也相切时,t的值为秒或秒.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】若方程组中的2倍,则等于( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x22x+3的图象与x轴交于AB两点(A在点B的左边),与y轴交于点C,点D为抛物线的顶点.

(1)求点ABC的坐标;

(2)M(m0)为线段AB上一点(M不与点AB重合),过点Mx轴的垂线,与直线AC交于点E,与抛物线交于点P,过点PPQAB交抛物线于点Q,过点QQNx轴于点N,可得矩形PQNM.如图,点P在点Q左边,试用含m的式子表示矩形PQNM的周长;

(3)当矩形PQNM的周长最大时,m的值是多少?并求出此时的△AEM的面积;

(4)(3)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点Fy轴的平行线,与直线AC交于点G(G在点F的上方).若FG2DQ,求点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地区2015年投入教育经费2900万元,2017年投入教育经费3509万元.

(1)2015年至2017年该地区投入教育经费的年平均增长率;

(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2019年需投入教育经费4250万元,如果按(1)中教育经费投入的增长率,到2019年该地区投入的教育经费是否能达到4250万元?请说明理由.

(参考数据: )

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】临近期末考试,心理专家建议考生可通过以下四种方式进行考前减压:.享受美食,.交流谈心,.体育锻炼,.欣赏艺术.

1)随机采访一名九年级考生,选择其中某一种方式,他选择“享受美食”的概率是

2)同时采访两名九年级考生,请用画树状图或列表的方法求他们中至少有一人选择“欣赏艺术”的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,热气球的探测器显示,从热气球A看一栋大楼顶部B的俯角为,看这栋大楼底部C的俯角为,热气球A的高度为270米,则这栋大楼的高度为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点O为坐标原点,抛物线x轴于点A、点A在点B的左边,交y轴于点C,直线经过点B,交y轴于点D,且

bc的值;

在第一象限,连接OPBP,若,求点P的坐标,并直接判断点P是否在该抛物线上;

的条件下,连接PD,过点P,交抛物线于点F,点E为线段PF上一点,连接DEBEBEPD于点G,过点E,垂足为H,若,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、点B(3,0)、点C(4,y1),若点D(x2,y2)是抛物线上任意一点,有下列结论:

①二次函数y=ax2+bx+c的最小值为﹣4a;

②若﹣1≤x2≤4,则0≤y2≤5a;

③若y2>y1,则x2>4;

④一元二次方程cx2+bx+a=0的两个根为﹣1

其中正确结论的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市著名景点“凤凰楼”,一耸入云的文化丰碑,坐落于凤凰山之巅周末,阳光明媚,小明、小芳等同学一起登凤凰山,在山顶,他们想用一些测量工具和所学知识测量“凤凰楼”的高度来检验自己掌握知识和运用知识的能力他们经过观察发现,观测点与“凤凰楼”底部间的距离不易测得,因此他们运用如下方法来进行测量:如图,小芳在小明和“凤凰楼”之间的直线BM上放一平面镜,在镜面上做一个标记,这个标记在直线BM上对应位置为点C,镜子不动,小明看着镜面上的标记,他来回走动,走到点D时,看到“凤凰楼”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小明眼睛与地面的高度米,米,然后,小明从点D沿DM方向走了24米,到达“凤凰楼”影子的末端F处,此时,测的小明身高FG的影长米,如图,已知,其中,测量时所使用的平面镜厚度忽略不计请你根据题中提供的相关信息,求出“凤凰楼”的高AB的长度.

查看答案和解析>>

同步练习册答案