【题目】如图,ABCD中,点E、F在BD上,且BF=DE.
(1)写出图中所有你认为全等的三角形;
(2)连接AF、CE,四边形AFCE是平行四边形吗?请证明你的结论.
【答案】
(1)解:①△AED≌△CFB,②△ABE≌△CDF,③△ABD≌△CDB;
理由是:①∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴∠ADB=∠DBC,
在△AED和△CFB中,
∵ ,
∵△AED≌△CFB(SAS),
②∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠ABD=∠BDC,
∵BF=DE,
∴AC﹣BF=AC﹣DE,
∴DF=BE,
在△ABE和△CDF中,
∵ ,
∴△ABE≌△CDF(SAS);
③在△ABD和△CDB中,
,
∴△ABD≌△CDB(SSS)
(2)解:四边形AECF是平行四边形,理由是:
由(1)得:△AED≌△CFB,
∴AE=CF,∠AED=∠CFB,
∴∠AEB=∠CFE,
∴AE∥FC,
∴四边形AECF是平行四边形
【解析】(1)有三对全等的三角形,依次写出;(2)证明△AED≌△CFB,得AE=CF,∠AED=∠CFB,根据等角的补角相等得:∠AEB=∠CFE,所以AE∥CF,由一组对边平行且相等的四边形是平行四边形得出结论.
【考点精析】关于本题考查的平行四边形的判定与性质,需要了解若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A.形状相同的两个三角形是全等三角形
B.全等三角形的周长和面积分别相等
C.所有等腰三角形都是全等三角形
D.所有等边三角形都是全等三角形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市自来水公司为鼓励居民节约用水,采取月用水量分段收费方法.若某户居民应交水费y(元)与用水量x(方)的函数关系如图所示.
(1)分别求出当0≤x≤15和x>15时,y与x的函数关系式.
(2)若某用户该月用水21方,则应交水费多少元?
(3)若小明家每月水费不少于79.5元,则小明家每月用水量不少于多少方?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ排成一列,所有正三角形都关于PQ对称,其中第一个△A1B1C1的顶点A1与点P重合,第二个△A2B2C2的顶点A2是B1C1与PQ的交点……最后一个△AnBnCn的顶点Bn,Cn在圆上.
(1)如图②,当n=1时,求正三角形的边长a1.
(2)如图③,当n=2时,求正三角形的边长a2.
(3)如图①,求正三角形的边长an(用含n的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P(+1, ﹣1)在双曲线y=kx-1(x>0)上.
(1)求k的值;
(2)若正方形ABCD的顶点C,D在双曲线y=kx-1(x>0)上,顶点A,B分别在x轴和y轴的正半轴上,求点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是( )
A.y=2x+3
B.y=x﹣3
C.y=2x﹣3
D.y=﹣x+3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com