精英家教网 > 初中数学 > 题目详情

【题目】我们知道:三角形的三条角平分线交于一点,这个点称为三角形的内心(三角形内切圆的圆心).现在规定:如果四边形的四个角的角平分线交于一点,我们把这个点也成为“四边形的内心”.
(1)试举出一个有内心的四边形.
(2)如图1,已知点O是四边形ABCD的内心,求证:AB+CD=AD+BC.

(3)如图2,Rt△ABC中,∠C=90°.O是△ABC的内心.若直线DE截边AC,BC于点D,E,且O仍然是四边形ABED的内心.这样的直线DE可画多少条?请在图2中画出一条符合条件的直线DE,并简单说明作法.

(4)问题(3)中,若AC=3,BC=4,满足条件的一条直线DE∥AB,求DE的长.

【答案】
(1)解:菱形

(2)解:作OE⊥AD与E,OF⊥AB与F,CG⊥BC与G,OH⊥CD与H,

∵∠AEO=∠AFO=90°

∴O是四边形ABCD的内心

∴∠EAO=∠FAO

在Rt△AEO和Rt△AFO中,

∴Rt△AEO≌Rt△AFO(HL)

∴AE=AF,

同理:BF=BG,CG=CH,DH=DE,

∴AE+DEBG+CG=AF+BF+CH+DH

即:AD+BC=AB+CD


(3)解:有无数条

作△ABC的内切圆圆O,切AC,BC于M、N,在弧MN上取一点F,作过F点作圆O的切线,交AB于E,交AC于D,沿DE剪裁,


(4)解:作CG⊥AB与点G,

由勾股定理得:AB=

=2.4

设△ABC的内切圆的半径为r,则r= =1

∵DE∥AB

∴△CDE∽△CAB


【解析】(1)根据四边形的每一条对角线平分一组对角,即可得答案。
(2)根据内心是各个角的平分线的交点,过交点O分别作四边的垂线段,根据角平分线的性质及全等三角形的判定和性质,可证得结果。
(3)可画无数条。
(4)根据勾股定理求得AB的长,根据面积相等求出CG的长,由三角形的内切圆半径和三角形三边关系式可求出r的长。根据相似三角形的性质,建立方程,求出DE的长。
【考点精析】关于本题考查的勾股定理的概念和三角形的内切圆与内心,需要了解直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知如图抛物线y=ax2+bx+c与x轴交于点A(﹣1,0)、B(3,0),与y轴交于点C(0,﹣3)

(1)请直接写出抛物线的解析式.
(2)抛物线的对称轴上是否存在一点P,使得△ACP的周长最短,若存在,请直接写出点P的坐标.
(3)点G的坐标是(2,﹣3),点F是x轴上一点,抛物线上是否存在点R,使得以A,G,F,R为顶点的四边形是平行四边形?若存在,直接写出点R的坐标.
(4)在B、C连线的下方抛物线上是否存在一点Q,使得△QBC的面积是△ABC的面积的一半?若存在,求出点Q的坐标.
(5)抛物线的顶点设为D,对称轴与y轴的交点为E,M(m,0)是x轴上一动点,点N是线段DE上的一点,若∠MNC=90°,请直接写出实数m的变化范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的AB两仓库.已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为70吨,B库的容量为110吨.从甲、乙两库到AB两库的路程和运费如下表:(表中“元/吨千米”表示每吨粮食运送1千米所需人民币)

路程(千米)

运费(元/吨千米)

甲库

乙库

甲库

乙库

A

20

15

12

12

B

25

20

10

8

1)若甲库运往A库粮食x吨,请写出将粮食运往AB两库的总运费y(元)与x(吨)的函数关系式;

2)当甲、乙两库各运往AB两库多少吨粮食时,总运费最省,最省的总运费是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD的对角线ACBD相交于点OAE平分∠BAD,分别交BCBD于点EP,连接OE,∠ADC60°ABBC2,下列结论:①∠CAD30°;②BD2;③S四边形ABCDABAC;④OEAD;⑤SBOE.其中正确的个数有( )个

A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,矩形ABCD中,AB4cmBC8cmAC的垂直平分线EF分别交ADBC于点EF,垂足为O

1)如图(1),连接AFCE

①四边形AFCE是什么特殊四边形?说明理由;

②求AF的长;

2)如图(2),动点PQ分别从AC两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点PAFBA停止,点QCDEC停止.在运动过程中,已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当ACPQ四点为顶点的四边形是平行四边形时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD,∠A=110°,若点D在AB、AC的垂直平分线上,则∠BDC为( )

A.90°
B.110°
C.120°
D.140°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某中学举行十佳歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.

1)根据所给信息填空:

平均数(分)

中位数(分)

众数(分)

方差

初中部

85

______

85

_______

高中部

_____

80

______

160

2)你觉得高中部和初中部的决赛成绩哪个更好?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系中,把矩形OCBA绕点C顺时针旋转α,得到矩形FCDE,FCAB交于点H,A(0,4),C(6,0).

(1)α=45°时,求H点的坐标.

(2)α=60°,ΔCBD是什么特殊的三角形?说明理由.

(3)AH=HC,求直线HC的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为的小正方形EFGH,已知AMRtABM较长直角边,AM=EF,则正方形ABCD的面积为(

A. B. C. D.

查看答案和解析>>

同步练习册答案