【题目】如图,在四边形中,,,如果,则四边形的面积为________.
科目:初中数学 来源: 题型:
【题目】已知:Rt△ABC中,∠C=90°,AC=3,BC=4,点E在AC上(E与A、C均不重合).
(1)若点F在AB上,且EF平分Rt△ABC的周长,设AE=x,用含x的代数式表示
△AEF的面积S△AEF;
(2)若点F在折线ABC上移动,试问是否存在直线EF将Rt△ABC的周长与面积同时平分?若存在直线EF,则求出AE的长;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是抛物线图象的一部分,抛物线的顶点坐标,与轴的一个交点,直线与抛物线交于,两点,下列结论:
①;②;③方程有两个相等的实数根;
④抛物线与轴的另一个交点是;⑤当时,有,
其中正确的序号是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,AB=AC,点D是BC边上一点(不与点B,C重合),以AD为边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.设∠BAC=α,∠BCE=β.
(1)求证:△CAE≌△BAD;
(2)探究:当点D在BC边上移动时,α、β之间有怎样的数量关系?请说明理由;
(3)如图2,若∠BAC=90°,CE与BA的延长线交于点F.求证:EF=DC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学八年级(5)班的学生到野外进行数学活动,为了测量一池塘两端A、B之间的距离,同学们设计了如下两种方案:
方案1:如图(1),先在平地上取一个可以直接到达A、B的点C,连接AC并延长AC至点D,连接BC并延长至点E,使DC=AC,EC=BC,最后量出DE的距离就是AB的长.
方案2:如图(2),过点B作AB的垂线BF,在BF上取C、D两点,使BC=CD,接着过D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB间的距离
问:(1)方案1是否可行?并说明理由;
(2)方案2是否可行?并说明理由;
(3)小明说:“在方案2中,并不一定需要BF⊥AB,DE⊥BF,将“BF⊥AB,DE⊥BF”换成条 也可以.”你认为小明的说法正确吗?如果正确的话,请你把小明所说的条件补上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2016甘肃省白银市)如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.
(1)画出△ABC关于x轴的对称图形△A1B1C1;
(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,-1).
(1)请以y轴为对称轴,画出与△ABC对称的△A1B1C1,并直接写出点A1、B1、C1的坐标;
(2)△ABC的面积是 .
(3)点P(a+1,b-1)与点C关于x轴对称,则a= ,b= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,、、在同一条直线上,连接.
(1)请找出图2中的全等三角形,并说明理由(说明:结论中不得含有图中未标识的字母);
(2)与垂直吗?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题中,真命题的是( )
A.两边和一角对应相等,两三角形全等
B.两腰对应相等的两等腰三角形全等
C.两角和一边对应相等,两三角形全等
D.两锐角对应相等的两直角三角形全等
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com