精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,AB=6,BC=8,动点Q从点A出发,沿着AB方向以1个单位长度/秒的速度匀速运动,同时动点P从点B出发,沿着对角线BD方向也以1个单位长度/秒的速度匀速运动,设运动时间为t秒(0<t≤5),以P为圆心,PB长为半径的⊙P与BD、AB的另一个交点分别为E、F,连结EF、QE.
(1)填空:FB=(用t的代数式表示);
(2)当t为何值时,点Q与点F相遇?
(3)当线段QE与⊙P有两个公共点时,求t的取值范围.

【答案】
(1) t
(2)解:当点Q与点F相遇时,AQ+BF=AB,

∴t+ t=6,

∴t= s,

∴当t= s时,点Q与点F相遇


(3)解:当直线QE与⊙P相切时,

∵∠BEQ=∠A=90°,∠QBE=∠ABD,

∴△QBE∽△DBA,

=

=

∴t= s,

∵线段QE与⊙P有两个公共点,

∴t的取值范围: <t<


【解析】解:(1)∵BE是⊙P的直径,四边形ABCD是矩形, ∴∠EFB=∠A=90°
在Rt△ABC中,∵AD=8,AB=6,
∴BD= =10,
∵EF∥AD,
=
=
∴BF= t.
给答案为 t.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在等腰Rt△ABC中,∠ABC=90°,AB=BC=4.点P是△ABC内的一点,连接PC,以PC为直角边在PC的右上方作等腰直角三角形PCD.连接AD,若AD∥BC,且四边形ABCD的面积为12,则BP的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,C=90°AD平分BACDEABE,有下列结论:CD=EDAC+BE=AB ③∠BDE=BAC AD平分CDE SABDSACD=ABAC,其中正确的有( )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.
(1)求证:△ACD≌△BCE;
(2)若∠D=53°,求∠B的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,点O是等边ABC内的任一点,连接OA,OB,OC.

(1)如图1,已知AOB=150°,BOC=120°,将BOC绕点C按顺时针方向旋转60°得ADC.

DAO的度数是

②用等式表示线段OA,OB,OC之间的数量关系,并证明;

(2)设AOB=α,BOC=β.

①当α,β满足什么关系时,OA+OB+OC有最小值?请在图2中画出符合条件的图形,并说明理由;

②若等边ABC的边长为1,直接写出OA+OB+OC的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A是双曲线y= 在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y= (k<0)上运动,则k的值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把下列各数的序号填在相应的大括号内:

①﹣17;②π;③﹣|﹣|;④;⑤;⑥﹣0.92;⑦ ;⑧﹣0.;⑨1.2020020002;

(1)正实数{   }

负有理数{   }

无理数{   }

(2)从以上9个数中选取2个有理数,2个无理数,用“+、﹣、×、÷”中的3种不同的运算符号将选出的4个数进行运算(可以用括号),使得计算结果为正整数,列出式子并计算   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】端午节期间,某商场为了吸引顾客,设立了一个可以自由转动的转盘(转盘被平均分成16),并规定:顾客每购买100元的商品,就能获得一次转转盘的机会,如果转盘停止后,指针正好对准红色、黄色或绿色区域,顾客就可以分别获得玩具熊、童话书、水彩笔.小明和妈妈购买了125元的商品,请你回答下列问题:

(1)小明获得奖品的概率是多少?

(2)小明获得玩具熊、童话书、水彩笔的概率分别是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某自行车经销商计划投入7.1万元购进100A型和30B型自行车,其中B型车单价是A型车单价的6倍少60元.

(1)求A、B两种型号的自行车单价分别是多少元?

(2)后来由于该经销商资金紧张,投入购车的资金不超过5.86万元,但购进这批自行年的总数不变,那么至多能购进B型车多少辆?

查看答案和解析>>

同步练习册答案