精英家教网 > 初中数学 > 题目详情
9.如图所示,一次函数y=kx+b和反比例函数y=$\frac{a}{x}$都经过A(2,1),B(-1,-2)两点,则不等式kx+b>$\frac{a}{x}$的解集为(  )
A.x>2B.x>-1C.-1<x<0或x>2D.x<-1或0<x<2

分析 根据图形,写出一次函数图象在反比例函数图象上方的x的取值范围即可.

解答 解:由图可知,当-1<x<0或x>2时,一次函数图象在反比例函数图象上方,
所以,不等式kx+b>$\frac{a}{x}$的解集为-1<x<0或x>2.
故选C.

点评 本题考查了反比例函数与一次函数的交点问题,仔细观察图形,主要利用了数形结合的思想.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.|-M|-|-N|-|-M|+|+2N|-|-3M|(M>0,N>0)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.当x=$\frac{-b+\sqrt{{b}^{2}-4ac}}{2a}$(a≠0,b2-4ac>0)时,代数式ax2+bx+c的值是(  )
A.0B.$\frac{-b-\sqrt{{b}^{2}-4ac}}{2a}$C.-$\frac{b}{a}$D.$\frac{c}{a}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.已知5|2a+1|与|4(b-3)|互为相反数,那么ab=-$\frac{3}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,二次函数y=$\frac{1}{2}$x2-$\frac{3}{2}$x-2的图象与x轴交于点A,B,点M,N在x轴上,点N在点M右侧,MN=2,以MN为直角边向上作等腰直角三角形CMN,∠CMN=90°,设点M的横坐标为m.
(1)当点C在这条抛物线上时,求m的值.
(2)将线段CN绕点N逆时针旋转90°后,得到对应线段DN.
①当点D在这条抛物线的对称轴上时,求点D的坐标.
②以DN为直角边作等腰直角三角形DNE,当点E在这条抛物线的对称轴上时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.若a是实数,则①a2+1,②3|a|+5,③|a|-4,④3a4+a3中,一定有平方根的是①②.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.下列说法中,正确的有(  )
①3是9的平方根;
②9的平方根是3;
③-9的平方根是±3;
④平方根等于本身的数是0;
⑤9的算术平方根是3.
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.绝对值不大于π的所有整数为0,±1,±2,±3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.一个无盖长方体盒子的容积是V.
(1)如果盒子底面是边长为a的正方形,这个盒子的表面积是多少?
(2)如果盒子底面是长为b、宽为c的长方形,这个盒子的表面积是多少?
(3)上面两种情况下,如果盒子的底面面积相等.那么两种盒子的表面积相差多少?(不计制造材料的厚度.)

查看答案和解析>>

同步练习册答案