精英家教网 > 初中数学 > 题目详情

【题目】如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴,y轴上,连OB,将纸片OABC沿OB折叠,使点A落在A′的位置,若OB=,tanBOC=,则点A′的坐标(  )

A. B. (﹣ C. (﹣ D. (﹣

【答案】C

【解析】分析:即求A点关于OB的对称点的坐标.通过解方程组求解.

详解tanBOC=OC=2BC

OC2+BC2=OB2=5BC=1OC=2

所以A10),B12).

直线OB方程y2=2x1),AA关于OB对称假设A′(x0y0),AA'中点为Mxy),x=y=

Mxy在直线OB y2=2x1)上,∴2=21),y0=2x0+1).

x02+y02=OA'2=OA2=1,∴x02+4x0+12=1,∴5x02+8x0+3=0

解得x0=﹣1或者x0=﹣

x0=﹣1y0=0,不合题意舍去

x0=﹣y0=

所以A(﹣).

故选C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,函数的图象与直线交于点.

(1)求的值;

(2)已知点,过点作平行于轴的直线,交直线于点,过点作平行于轴的直线,交函数的图象于点.

①当时,判断线段的数量关系,并说明理由;

②若,结合函数的图象,直接写出的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】张浩调查统计了他们家5月份每次打电话的通话时长,并将统计结果进行分组(每组含量最小值,不含最大值),将分组后的结果绘制成如图所示的频数分布直方图,则下列说法中不正确的是(  )

A. 张浩家5月份打电话的总频数为80

B. 张浩家5月份每次打电话的通话时长在510分钟的频数为15

C. 张浩家5月份每次打电话的通话时长在1015分钟的频数最多

D. 张浩家5月份每次打电话的通话时长在2025分钟的频率为6%

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,AF=BEAEDF相交于点O

1)求证:DAF≌△ABE

2)写出线段AEDF的数量和位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系xOy中,线段ABx轴的正半轴上移动,AB=1,过点ABy轴的平行线分别交函数y1=(x>0)y2=(x>0)的图像于CEDF,设点A的横坐标为m (m>0).

1)连接OCOE,则OCE面积为

2)连接CF,当m为何值时,四边形ABFC是矩形;

3)连接CDEF,判断四边形CDFE能否是平行四边形,并说明理由;

4)如图2,经过点By轴上点G04)作直线BG交直线AC于点H,若点H的纵坐标为正整数,请求出整数m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知数轴上点表示的数为,表示的数为,为边在数轴的上方作正方形ABCD.动点从点出发,以每秒个单位长度的速度沿数轴正方向匀速运动,同时动点从点出发,以每秒个单位长度的速度向点匀速运动,到达点后再以同样的速度沿数轴正方向匀速运动,设运动时间为.

(1)若点在线段.上运动,当t为何值时,?

(2)若点在线段上运动,连接,t为何值时,三角形的面积等于正方形面积的?

(3)在点和点运动的过程中,当为何值时,点与点恰好重合?

(4)当点在数轴上运动时,是否存在某-时刻t,使得线段的长为,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在等边三角形ABC中,点E在线段AB上,点DCB的延长线上,

1)试证明△DEC是等腰三角形;(2)在图中找出与AE相等的线段,并证明

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2bxc(a≠0)的图象如图所示,根据图象解答下列问题.

(1)写出方程ax2bxc0的两个根;

(2)写出不等式ax2bxc0的解集;

(3)写出yx的增大而减小的自变量x的取值范围;

(4)若方程ax2bxck有两个不相等的实数根,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线,经过A10)、B70)两点,交y轴于D点,以AB为边在x轴上方作等边△ABC

1)求抛物线的解析式;

2)在x轴上方的抛物线上是否存在点M,是SABM=SABC?若存在,请求出点M的坐标;若不存在,请说明理由;

3)如图2E是线段AC上的动点,F是线段BC上的动点,AFBE相交于点P

①若CE=BF,试猜想AFBE的数量关系及∠APB的度数,并说明理由;

②若AF=BE,当点EA运动到C时,请直接写出点P经过的路径长(不需要写过程).

查看答案和解析>>

同步练习册答案