精英家教网 > 初中数学 > 题目详情

【题目】如图,在锐角三角形ABC中,BAC=60°,BF,CE为高,点D为BC的中点,连接EF,ED,FD,有下列四个结论:①ED=FD;②∠ABC=60°时,EF∥BC;③BF=2AF;④AF:AB=AE:AC.其中正确的个数有(  )

A. 1个 B. 2个 C. 3个 D. 4个

【答案】C

【解析】

①由BF、CE为高,DBC的中点,根据直角三角形斜边上的中线等于斜边的一半,即可证得FD=ED;

②由两角对应相等,易证得AEF∽△ABC,然后由∠BAC=60°与∠ABC=60°,可得ABC是等边三角形,则易得∠AEF=ABC=60°,即可得EFBC;

③根据锐角三角函数的定义,可得③错误;

④可证ABF∽△ACE,可得结论.

①∵BF、CE为高,

∴∠BEC=BFC=90°,

DBC的中点,

FD=ED,

故①正确;

②∵BF、CE为高,

∴∠BFA=CEA=90°,

∵∠A=A,

∴△BFA∽△CEA,

∵∠BAC=60°,ABC=60°,

∴△ABC是等边三角形,

∴△AEF也是等边三角形,

∴∠AEF=ABC=60°,

EFBC,

故②正确;

③∵∠ABC=60°,

tan60°=

BF=AF,

故③错误;

④∵∠AFB=AEC=90°,A=A,

∴△ABF∽△ACE,

AF:AB=AE:AC.

故④正确;

本题正确的个数有3个:①②④

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】现代互联网技术的广泛应用,催生了快递行业的高速发展.阜阳市某家快递公司,20173月份与5月份完成投递的快递总件数分别为10万件和12.1万件.现假定该公司每月投递的快递总件数的增长率相同.

(1)求该快递公司投递快递总件数的月平均增长率

(2) 如果平均每人每月最多可投递快递0.6万件,那么该公司现有的21名快递投递业务员能否完成20176月份的快递投递任务?如果不能,请问至少需要增加几名业务员?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是数轴的一部分,其单位长度为a,已知△ABC中,AB=3a,BC=4a,AC=5a.
(1)用直尺和圆规作出△ABC(要求:使点A,C在数轴上,保留作图痕迹,不必写出作法);
(2)记△ABC的外接圆的面积为S , △ABC的面积为S , 试说明 >π.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】仔细阅读下面例题,然后按要求解答问题:

例题:已知二次三项式 有一个因式是 ,求另一个因式以及 的值.

解法一:设另一个因式为

,

解得 ,

另一个因式为 的值为

解法二:∵二次三项式 x2-4x+m 有一个因式是 (x+3),

∴当x+3=0,即x=-3时,x2-4x+m=0.

x=-3代入x2-4x+m=0,

m=-21,

x2-4x-21=(x+3)(x-7).

问题:分别仿照以上两种方法解答下面问题:

(1)已知二次三项式 有一个因式是 ,求另一个因式以及 的值.

解法一解法二:

(2)直接回答:

已知关于x的多项式 2x3 (3k)x22x1有一个因式是 1,则k的值为_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD中,∠B=60°,边AB=BC=8cm,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速运动,其中点P运动的速度是每秒1cm,点Q运动的速度是每秒2cm,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t秒.

解答下列问题:

(1)AP=   ,BP=   ,BQ=   .(用含t的代数式表示,t≤4)

(2)当点Q到达点C时,PQAB的位置关系如何?请说明理由.

(3)在点P与点Q的运动过程中,△BPQ是否能成为等边三角形?若能,请求出t,若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一个长方形运动场被分隔成个区, 区是边长为的正方形, 区是边长为的正方形.

(1)列式表示每个区长方形场地的周长,并将式子化简;

(2)列式表示整个长方形运动场的周长,并将式子化简;

(3)如果 ,求整个长方形运动场的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,O为坐标原点.已知反比例函数y= (k>0)的图象经过点A(2,m),过点A作AB⊥x轴于点B,且△AOB的面积为

(1)求k和m的值;
(2)点C(x,y)在反比例函数y= 的图象上,求当1≤x≤3时函数值y的取值范围;
(3)过原点O的直线l与反比例函数y= 的图象交于P、Q两点,试根据图象直接写出线段PQ长度的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A在数轴上对应的数为a,点B对应的数为b,且ab满足|a+3|+b﹣22=0

1)求AB两点的对应的数ab

2)点C在数轴上对应的数为x,且x是方程2x+1=x8的解.

①求线段BC的长;

②在数轴上是否存在点P,使PA+PB=BC?求出点P对应的数;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,分别延长ABCD的边BA、DC到点E、H,使得AE=AB,CH=CD,连接EH,分别交AD、BC于点F、G. 求证:△AEF≌△CHG.

查看答案和解析>>

同步练习册答案