精英家教网 > 初中数学 > 题目详情

【题目】为给同学们创造更好的读书条件,学校准备新建一个长度为L的度数长廊,并准备用若干块带有花纹和没有花纹的两种规格、大小相同的正方形地面砖搭配在一起,按如图所示的规律拼成图案铺满长廊,已知每个小正方形地面砖的边长均为0.6m.

(1)按图示规律,第一图案的长度L1=m;第二个图案的长度L2=m.
(2)请用代数式表示带有花纹的地面砖块数n与走廊的长度Ln之间的关系.
(3)当走廊的长度L为36.6m时,请计算出所需带有花纹图案的瓷砖的块数.

【答案】
(1)1.8;3
(2)解:观察图形可得:

第1个图案中有花纹的地面砖有1块,

第2个图案中有花纹的地面砖有2块,

则第n个图案中有花纹的地面砖有n块;

第一个图案边长L=3×0.6,第二个图案边长L=5×0.6,则第n个图案边长为L=(2n+1)×0.6


(3)解:把L=36.6代入L=(2n+1)×0.6中得:

36.6=(2n+1)×0.6,

解得:n=30,

答:需带有花纹图案的瓷砖的块数是30


【解析】解:(1)第一图案的长度L1=0.6×3=1.8,第二个图案的长度L2=0.6×5=3;
故答案为:1.8,3;
(1)观察题目中的已知图形,可得前两个图案中有花纹的地面砖分别有:1,2个,第二个图案比第一个图案多1个有花纹的地面砖,所以可得第n个图案有花纹的地面砖有n块;第一个图案边长3×0.6=L1 , 第二个图案边长5×0.6=L2;(2)由(1)得出则第n个图案边长为L=(2n+1)×0.6;(3)根据(2)中的代数式,把L为36.6m代入求出n的值即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一次函数y=2x-ax轴的交点是点(-2,0)关于y轴的对称点,求一元一次不等式2x-a≤0的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】洋洋有4张卡片写着不同的数字的卡片,请你按要求抽出卡片,完成下列各问题:

(1)从中取出2张卡片,使这2张卡片上数字乘积最大,如何抽取?最大值是多少?
(2)从中取出2张卡片,使这2张卡片上数字组成一个最大的数,如何抽取?最大的数是多少?
(3)将这4张卡片上的数字用学过的运算方法,使结果为24.写出运算式子(一种即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知甲地的海拔高度是300m,乙地的海拔高度是﹣50m,那么甲地比乙地高m.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,ABC=90°,AB=BC=,将ABC绕点A逆时针旋转60°,得到ADE,连接BE,则BE的长是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比(
A.增加了10%
B.减少了10%
C.增加了(1+10%)
D.没有改变

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD是△ABC边上的高,BE平分∠△ABC交AD于点E.若∠C=60°,∠BED=70°. 求∠ABC和∠BAC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作ADE,使AD=AE,DAE=BAC,连接CE.

(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=  度;

(2)设∠BAC=α,BCE=β.

①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;

②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校科技小组研制了一套信号发射、接收系统.在对系统进行测试中如图,小明从路口A处出发,沿东南方向笔直公路行进,并发射信号,小华同时从A处出发,沿西南方向笔直公路行进,并接收信号.若小明步行速度为39米/分,小华步行速度为52米/分,恰好在出发后30分时信号开始不清晰.

1)你能求出他们研制的信号收发系统的信号传送半径吗?(以信号清晰为界限)

2)通过计算,你能找到题中数据与勾股数345的联系吗?试从中寻找求解决问的简便算法.

查看答案和解析>>

同步练习册答案