精英家教网 > 初中数学 > 题目详情

如图,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.

(1)猜想线段GF与GC有何数量关系?并证明你的结论;

(2)若AB=3,AD=4,求线段GC的长.

 


 解:(1)GF=GC.

理由如下:连接GE,

∵E是BC的中点,

∴BE=EC,

∵△ABE沿AE折叠后得到△AFE,

∴BE=EF,

∴EF=EC,

∵在矩形ABCD中,

∴∠C=90°,

∴∠EFG=90°,

∵在Rt△GFE和Rt△GCE中,

∴Rt△GFE≌Rt△GCE(HL),

∴GF=GC;

(2)设GC=x,则AG=3+x,DG=3﹣x,

在Rt△ADG中,42+(3﹣x)2=(3+x)2

解得x=


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


在2、3、12、16这些数中,(     )是4和6的公倍数,(      )是4和6的公因数。

查看答案和解析>>

科目:初中数学 来源: 题型:


已知方程5x2+mx﹣10=0的一根是﹣5,求方程的另一根及m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:


已知等腰梯形ABCD的中位线EF的长为6,腰长为3,则这个等腰梯形的周长为      

查看答案和解析>>

科目:初中数学 来源: 题型:


x2﹣12x﹣4=0;

查看答案和解析>>

科目:初中数学 来源: 题型:


下列计算正确的是(  )

  A. 2+3=5 B. 2=5 C. =±4 D. ÷=2

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在一单位长度为1cm的方格纸上,依如图所示的规律,设定点A1、A2、A3、A4、A5、A6、A7、…、An,连接点O、A1、A2组成三角形,记为△1,连接O、A2、A3组成三角形,记为△2…,连O、An、An+1组成三角形,记为△n(n为正整数),请你推断,当n为50时,△n的面积=(  )cm2

  A. 1275 B. 2500 C. 1225 D. 1250

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A、B分别在x轴与y轴上,已知A点坐标为(a,0),B点坐标为(0,b),且a,b满足+|2a﹣b﹣2|=0.D为y轴上一点,其坐标为(0,2),点P从点A出发以每秒1个单位的速度沿线段AC﹣CB的方向运动,当点P与点B重合时停止运动,运动时间为t秒.

(1)当点P经过点C时,求直线DP的函数解析式;

(2)①求△OPD的面积S关于t的函数解析式;

②如图②,把长方形沿着OP折叠,点B的对应点B′恰好落在AC边上,求点P的坐标.

(3)点P在运动过程中是否存在使△BDP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,直线l:y=x+2交y轴于点A,以AO为直角边长作等腰Rt△AOB,再过B点作等腰Rt△A1BB1交直线l于点A1,再过B1点再作等腰Rt△A2B1B2交直线l于点A2,以此类推,继续作等腰Rt△A3B2B3﹣﹣﹣,Rt△AnBn﹣1Bn,其中点A0A1A2…An都在直线l上,点B0B1B2…Bn都在x轴上,且∠A1BB1,∠A2B1B2,∠A3B2B3…∠An﹣1BnBn﹣1都为直角.则点A3的坐标为   ,点An的坐标为   

查看答案和解析>>

同步练习册答案