分析 (1)根据图象可设y=kx+b,将(40,160),(120,0)代入,得到关于k、b的二元一次方程组,解方程组即可;
(2)根据每千克的利润×销售量=2400元列出方程,解方程求出销售单价,从而计算销售量,进而求出销售成本,与3000元比较即可得出结论.
解答 解:(1)设y与x的函数关系式为y=kx+b,
将(40,160),(120,0)代入,
得$\left\{\begin{array}{l}{40k+b=160}\\{120k+b=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{k=-2}\\{b=240}\end{array}\right.$,
所以y与x的函数关系式为y=-2x+240(40≤x≤120);
(2)由题意得(x-40)(-2x+240)=2400,
整理得,x2-160x+6000=0,
解得x1=60,x2=100.
当x=60时,销售单价为60元,销售量为120千克,则成本价为40×120=4800(元),超过了3000元,不合题意,舍去;
当x=100时,销售单价为100元,销售量为40千克,则成本价为40×40=1600(元),低于3000元,符合题意.
所以销售单价为100元.
答:销售单价应定为100元.
点评 本题考查了一次函数的应用以及一元二次方程的应用,利用待定系数法求出y与x的函数关系式是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | (1,2) | B. | (1,1) | C. | ($\sqrt{2}$,$\sqrt{2}$) | D. | (2,1) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com