【题目】九年级(3)班数学兴趣小组经过市场调查,整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下.已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).
时间x(天) | 1 | 30 | 60 | 90 |
每天的销 售量p(件) | 198 | 140 | 80 | 20 |
(1)求出w与x之间的函数表达式;
(2)销售该商品在第几天时,当天获得的销售利润最大?并求出最大利润;
(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.
【答案】(1) ;(2)当x=45时,w最大,最大值为6050;(3)共有24天每天的销售利润不低于5600元.
【解析】
(1)当0≤x≤50时,设商品的售价y与时间x的函数关系式为y=kx+b,由点的坐标利用待定系数法即可求出此时y关于x的函数关系式,根据图形可得出当50<x≤90时,y=90.再结合给定表格,设每天的销售量p与时间x的函数关系式为p=mx+n,套入数据利用待定系数法即可求出p关于x的函数关系式,根据销售利润=单件利润×销售数量即可得出w关于x的函数关系式;
(2)根据w关于x的函数关系式,分段考虑其最值问题.当0≤x≤50时,结合二次函数的性质即可求出在此范围内w的最大值;当50<x≤90时,根据一次函数的性质即可求出在此范围内w的最大值,两个最大值作比较即可得出结论;
(3)令w≥5600,可得出关于x的一元二次不等式和一元一次不等式,解不等式即可得出x的取值范围,由此即可得出结论.
(1)当0≤x≤50时,设商品的售价y与时间x之间的函数表达式为y=kx+b(k,b为常数且k≠0).
∵直线y=kx+b经过点(0,40),(50,90),
∴解得
∴售价y与时间x之间的函数表达式为y=x+40.
当50<x≤90时,y=90.
∴售价y与时间x之间的函数表达式为
y=
由数据可知每天的销售量p与时间x成一次函数关系.
设每天的销售量p与时间x之间的函数表达式为p=mx+n(m,n为常数,且m≠0).
∵直线p=mx+n经过点(30,140),(60,80),
∴解得
∴p=-2x+200(0≤x≤90,且x为整数).
将(1,198),(90,20)代入p=-2x+200均成立.
当0≤x≤50时,w=(y-30)·p=(x+40-30)(-2x+200)=-2x2+180x+2000;
当50<x≤90时,w=(90-30)(-2x+200)=-120x+12000.
综上所述,每天的销售利润w与时间x之间的函数表达式是
w=
(2)当0≤x≤50时,w=-2x2+180x+2000=-2(x-45)2+6050.
∵a=-2<0且0≤x≤50,
∴当x=45时,w取得最大值,最大值为6050.
当50<x≤90时,w=-120x+12000.
∵k=-120<0,∴w随x的增大而减小,
∴w<6000.
∵6050>6000,
∴当x=45时,w最大,最大值为6050.
即销售该商品在第45天时,当天获得的销售利润最大,最大利润是6050元.
(3)当0≤x≤50时,令w=-2x2+180x+2000≥5600,即-2x2+180x-3600≥0,
解得30≤x≤50,50-30+1=21(天).
当50<x≤90时,令w=-120x+12000≥5600,即-120x+6400≥0,
解得50<x≤53.
∵x为整数,∴50<x≤53,53-50=3(天),
21+3=24(天),
故该商品在销售过程中,共有24天每天的销售利润不低于5600元.
科目:初中数学 来源: 题型:
【题目】某中学开展了“手机伴我健康行”主题活动.他们随机抽取部分学生进行“手机使用目的”和“每周使用手机时间”的问卷调查,并绘制成如图①②的统计图。已知“查资料”人人数是40人。
请你根据以上信息解答以下问题
(1)在扇形统计图中,“玩游戏”对应的圆心角度数是_______________。
(2)补全条形统计图
(3)该校共有学生1200人,估计每周使用手机时间在2小时以上(不含2小时)的人数
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数y=2x+4,
(1)在如图所示的平面直角坐标系中,画出函数的图象.
(2)求图象与x轴的交点A的坐标,与y轴交点B的坐标.
(3)利用图象直接写出:当y<0时,x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,P为AC延长线上一点,且∠PBC=∠BAC,连接DE,BE.
(1)求证:BP是⊙O的切线;
(2)若sin∠PBC=,AB=10,求BP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(3,0),B(0,-1),连接AB,过B点作AB的垂线段,使BA=BC,连接AC.
(1)如图1,求C点坐标;
(2)如图2,若P点从A点出发,沿x轴向左平移,连接BP,作等腰直角三角形△BPQ,连接CQ.求证:PA=CQ.
(3)在(2)的条件下,若C、P、Q三点共线,求此时P点坐标及∠APB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,以原点为旋转中心,把点A(3,4)逆时针旋转90°,得到点B,则点B的坐标为( )
A. (4,﹣3) B. (﹣4,3) C. (﹣3,4) D. (﹣3,﹣4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两车分别从、两地同时出发,相向行驶,已知甲车的速度大于乙车的速度,甲车到达地后马上以另一速度原路返回地(掉头的时间忽略不计),乙车到达地以后即停在地等待甲车.如图所示为甲乙两车间的距离(千米)与甲车的行驶时间(小时)之间的函数图象,则当乙车到达地的时候,甲车与地的距离为__________千米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°.点O是AB的中点,边AC=6,将边长足够大的三角板的直角顶点放在点O处,将三角板绕点0旋转,始终保持三角板的直角边与AC相交,交点为点E,另条直角边与BC相交,交点为D,则等腰直角三角板的直角边被三角板覆盖部分的两条线段CD与CE的长度之和为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(阅读理解)
截长补短法,是初中数学儿何题中一种输助线的添加方法,截长就是在长边上载取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.
(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.
解题思路:延长DC到点E,使CE=BD.连接AE,根据∠BAC+∠BDC=180°,可证∠ABD=∠ACE,易证得△ABD≌△ACE,得出△ADE是等边三角形,所以AD=DE,从而探寻线段DA、DB、DC之间的数量关系.
根据上述解题思路,请直接写出DA、DB、DC之间的数量关系是___________
(拓展延伸)
(2)如图2,在Rt△ABC中,∠BAC=90°,AB=AC.若点D是边BC下方一点,∠BDC=90°,探索线段DA、DB、DC之间的数量关系,并说明理由;
(知识应用)
(3)如图3,一副三角尺斜边长都为14cm,把斜边重叠摆放在一起,则两块三角尺的直角项点之间的距离PQ的长为________cm.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com