精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线yax2+x+ca0)与x轴交于AB两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知点A的坐标为(﹣10),点C的坐标为(02).

1)求抛物线的解析式;

2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;

3)点E是线段BC上的一个动点,过点Ex轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.

【答案】(1)y=﹣x2+x+2(2)(4)或()或(,﹣)(3)(21

【解析】

1)利用待定系数法转化为解方程组即可.

2)如图1中,分两种情形讨论①当CPCD时,②当DPDC时,分别求出点P坐标即可.

3)如图2中,作CMEFM,设0≤a≤4),根据S四边形CDBFSBCD+SCEF+SBEF构建二次函数,利用二次函数的性质即可解决问题.

解:(1)由题意

解得

∴二次函数的解析式为

2)存在.如图1中,

C02),

CD

CPCD时,

DPDC时,

综上所述,满足条件的点P坐标为

3)如图2中,作CMEFM

B40),C02),

∴直线BC的解析式为

0≤a≤4),

S四边形CDBFSBCD+SCEF+SBEF

a2时,四边形CDBF的面积最大,最大值为

E21).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AC⊙O的直径,BC⊙O的弦,点P⊙O外一点,连接PAPBAB,已知∠PBA=∠C

1)求证:PB⊙O的切线;

2)连接OP,若OP∥BC,且OP=8⊙O的半径为,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知甲同学手中藏有三张分别标有数字的卡片,乙同学手中藏有三张分别标有数字132的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为.

1请你用树形图或列表法列出所有可能的结果.

2现制定这样一个游戏规则:若所选出的能使得有两个不相等的实数根,则甲获胜;否则乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图所示,点为矩形的中点,在矩形的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员从点出发,沿着的路线匀速行进,到达点.设运动员的运动时间为,到监测点的距离为.现有的函数关系的图象大致如图所示,则这一信息的来源是( ).

A. 监测点 B. 监测点 C. 监测点 D. 监测点

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,对于点Pxy)和Qxy′),给出如下定义:

,则称点Q为点P的“可控变点”.

例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).

(1)点(﹣5,﹣2)的“可控变点”坐标为  

(2)若点P在函数的图象上,其“可控变点”Q的纵坐标y′是7,求“可控变点”Q的横坐标;

(3)若点P在函数)的图象上,其“可控变点”Q的纵坐标y′ 的取值范围是,求实数a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】电动自行车已成为市民日常出行的首选工具。据某市品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月销售216辆.

(1)求该品牌电动车销售量的月平均增长率;

(2)若该品牌电动自行车的进价为2300元,售价2800元,则该经销商1月至3月共盈利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在正方形ABCD中,以AB为边向正方形外作等边三角形ABE,连接CEBD交于点G,连接AG,那么∠AGD的底数是______度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣2x2+8x﹣6与x轴交于点AB,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2x轴交于点B,D.若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是____________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,C是⊙O上一点,过点OODAB,交BC的延长线于D,交AC于点EFDE的中点,连接CF

1)求证:CF是⊙O的切线.

2)若∠A22.5°,求证:ACDC

查看答案和解析>>

同步练习册答案