【题目】如图1,是的直径,是弦,点是的中点,交的延长线于.
(1)求证:是的切线;
(2)如图2,作于,交于,若,,求的长.
【答案】(1)见解析;(2)8
【解析】
(1)连接BC、OP,由AB是⊙O的直径、PE⊥AE知PE∥BC,根据点P是的中点知OP⊥BC,即可得OP⊥PE;
(2)由(1)知,四边形PECQ是矩形,从而可设PE=CQ=BQ=x,根据勾股定理求得BN的长,先证△BHN∽△BQO得,表示出BO、OQ的长,再证△PQN∽△BHN得,即,求出x即可.
解:(1)如图1,连接BC、OP,
∵AB是⊙O的直径,
∴∠ACB=90°,即BC⊥AE,
又∵PE⊥AE,
∴PE∥BC,
∵点P是的中点,
∴OP⊥BC,
∴OP⊥PE,
∴PE是⊙O的切线;
(2)如图2,连接OP,
由(1)知,四边形PECQ是矩形,
∴设PE=CQ=BQ=x,
∵NH=3,BH=4,PH⊥AB,
∴BN=5,
∵∠B=∠B,∠BHN=∠BQO=90°,
∴△BHN∽△BQO,
∴,即,
解得:BO=,OQ=,
∴PQ=PO-OQ=BO-OQ=,
∵∠PNQ=∠BNH,∠PQN=∠BHN=90°,
∴△PQN∽△BHN,
∴,
即,
解得:,
∴PE=8.
科目:初中数学 来源: 题型:
【题目】为推进扬州市“五个一百工程”活动,小明、小亮、小丽3人分别从A、B两种不同的名著中任意选择一种阅读
(1)小明选择A种名著阅读的概率是 ;
(2)求小明、小亮、小丽3人选择同一种名著阅读的概率(请用画树状图的方法给出分析过程,并求出结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在“学本课堂”的实践中,王老师经常让学生以“问题”为中心进行自主、合作、探究学习.
(课堂提问)王老师在课堂中提出这样的问题:如图1,在Rt△ABC中,∠ACB=90°,∠BAC=30°,那么BC和AB有怎样的数量关系?
(互动生成)经小组合作交流后,各小组派代表发言.
(1)小华代表第3小组发言:AB=2BC. 请你补全小华的证明过程.
证明:把△ABC沿着AC翻折,得到△ADC.
∴∠ACD=∠ACB=90°,
∴∠BCD=∠ACD+∠ACB=90°+90°=180°,
即:点B、C、D共线.(请在下面补全小华的证明过程)
(2)受到第3小组“翻折”的启发,小明代表第2小组发言:如图2,在△ABC中,如果把条件“∠ACB=90°”改为“∠ACB=135°”,保持“∠BAC=30°”不变,若BC=1,求AB的长.
(思维拓展)如图3,在四边形ABCD中,∠BCD=45°,∠BAD=90°,∠ADB=∠CDB=60°,且AC=3,则△ABD的周长为 .
(能力提升)如图4,点D是△ABC内一点,AD=AC,∠BAD=∠CAD=20°,∠ADB+∠ACB=210°,则AD、DB、BC三者之间的相等关系是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形AnOCnBn的对角线交点的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线的顶点为B(1,3),与轴的交点A在点 (2,0)和(3,0)之间.以下结论:
①;②;③;④≥;⑤若,且,
则.其中正确的结论有( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸上每个小正方形的边长均为1个单位长度,点A、B都在格点上(两条网格线的交点叫格点).
(1)将线段AB向上平移两个单位长度,点A的对应点为点A1,点B的对应点为点B1,请画出平移后的线段A1B1;
(2)将线段A1B1绕点A1按逆时针方向旋转90°,点B1的对应点为点B2,请画出旋转后的线段A1B2;
(3)连接AB2、BB2,求△ABB2的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=﹣x2+bx+c的图象与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为C(﹣3,0).
(1)填空:b=_____,c=_____.
(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;
(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角三角形ABC中,∠ABC=90°,点D在BC的延长线上,且BD=AB,过B作BEAC,与BD的垂线DE交于点E,
(1)求证:△ABC≌△BDE
(2)三角形BDE可由三角形ABC旋转得到,利用尺规作出旋转中心O(保留作图痕迹,不写作法)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com