【题目】(12分)如图,在平面直角坐标系中,O为原点,平行四边形ABCD的边BC在x轴上,D点在y轴上,C点坐标为(2,0),BC=6,∠BCD=60°,点E是AB上一点,AE=3EB,⊙P过D,O,C三点,抛物线过点D,B,C三点.
(1)求抛物线的解析式;
(2)求证:ED是⊙P的切线;
(3)若将△ADE绕点D逆时针旋转90°,E点的对应点E′会落在抛物线上吗?请说明理由;
(4)若点M为此抛物线的顶点,平面上是否存在点N,使得以点B,D,M,N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
【答案】(1);(2)证明见试题解析;(3)不在;(4)N(﹣5,)或(3,)或(﹣3,).
【解析】
试题分析:(1)先确定点B的坐标,再在Rt△OCD中利用∠OCD的正切求出OD的长,从而得到点D的坐标,然后利用交点式求抛物线的解析式;
(2)先计算出CD=2OC=4,由平行四边形的性质得到AB=CD=4,AB∥CD,∠A=∠BCD=60°,AD=BC=6,则由AE=3BE得到AE=3,得出,加上∠DAE=∠DCB,得到△AED∽△COD,∠ADE=∠CDO,而∠ADE+∠ODE=90°,则∠CDO+∠ODE=90°,得到CD为⊙P的直径,即可得到结论;
(3)由△AED∽△COD,得出DE的长,由∠CDE=90°,DE>DC,再由旋转的性质得E点的对应点E′在射线DC上,而点C、D在抛物线上,于是可判断点E′不能在抛物线上;
(4)利用配方得到y=,则M(﹣1,),且B(﹣4,0),D(0,),由平行四边形的性质和点平移的规律,利用分三种情况讨论得到N点的坐标.
试题解析:(1)∵C(2,0),BC=6,∴B(﹣4,0),在Rt△OCD中,∵tan∠OCD=,∴OD=2tan60°=,∴D(0,),设抛物线的解析式为y=a(x+4)(x﹣2),把D(0,)代入得a4(﹣2)=,解得a=,∴抛物线的解析式为=;
(2)在Rt△OCD中,CD=2OC=4,∵四边形ABCD为平行四边形,∴AB=CD=4,AB∥CD,∠A=∠BCD=60°,AD=BC=6,∵AE=3BE,∴AE=3,∴,,∴,而∠DAE=∠DCB,∴△AED∽△COD,∴∠ADE=∠CDO,而∠ADE+∠ODE=90°,∴∠CDO+∠ODE=90°,∴CD⊥DE,∵∠DOC=90°,∴CD为⊙P的直径,∴ED是⊙P的切线;
(3)E点的对应点E′不会落在抛物线上.理由如下:
∵△AED∽△COD,∴,即,解得DE=,∵∠CDE=90°,DE>DC,∴△ADE绕点D逆时针旋转90°,E点的对应点E′在射线DC上,而点C、D在抛物线上,∴点E′不能在抛物线上;
(4)存在.∵y==,∴M(﹣1,),而B(﹣4,0),D(0,),如图2,当BM为平行四边形BDMN的对角线时,点D向左平移4个单位,再向下平移个单位得到点B,则点M(﹣1,)向左平移4个单位,再向下平移个单位得到点N1(﹣5,);
当DM为平行四边形BDMN的对角线时,点B向右平移3个单位,再向上平移个单位得到点M,则点D(0,)向右平移3个单位,再向上平移个单位得到点N2(3,);
当BD为平行四边形BDMN的对角线时,点M向左平移3个单位,再向下平移个单位得到点B,则点D(0,)向右平移3个单位,再向下平移个单位得到点N3(﹣3,),
综上所述,点N的坐标为(﹣5,)、(3,)、(﹣3,).
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3)
(1)求抛物线的解析式;
(2)点P在抛物线位于第四象限的部分上运动,当△BCP的面积最大时,求点P的坐标和△BCP的最大面积.
(3)当△BCP的面积最大时,在抛物线上是否点Q(异于点P),使△BCQ的面积等于△BCP,若存在,求出点Q的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC,则下列结论:①abc<0;②;③ac﹣b+1=0;④OAOB=﹣.其中正确结论的序号是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】热气球的探测器显示,从热气球底部A处看一栋高楼顶部的俯角为30°,看这栋楼底部的俯角为60°,热气球A处与地面距离为420米,求这栋楼的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列函数关系中,属于正比例函数关系的是( )
A.圆的面积与它的半径
B.面积为常数S时矩形的长y与宽x
C.路程是常数时,行驶的速度v与时间t
D.三角形的底边是常数a时它的面积S与这条边上的高h
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com