精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC、BC及AB的延长线交于点D、E、F,且BF=BC,⊙O是△BEF的外接圆,连接BD.
(1)求证:BD是⊙O的切线;
(2)求证:DEAC=BECE.

【答案】
(1)证明:如图,连接OB,

∵OB=OC,

∴∠2=∠3,

∵∠ABC=90°、D为AC的中点,

∴AD=CD=BD,∠3+∠4=90°,

∴∠1=∠5,

又∵∠ADF=∠ABC=90°,

∴∠1=90°﹣∠A、∠2=90°﹣∠A,

∴∠1=∠2,

则∠5=∠3,

∴∠5+∠4=90°,

∴BD是⊙O的切线;


(2)证明:在△ABC和△EBF中,

∴△ABC≌△EBF(ASA),

∴AB=BE,

∵∠ABC=∠EDC=90°,∠ACB=∠ECD,

∴△ABC∽△EDC,

= ,即ABCE=DEAC,

∴BECE=DEAC.


【解析】(1)连接OB,由OB=OC知∠2=∠3,由Rt△ABC中D为AC中点知∠1=∠5,由∠ADF=∠ABC=90°知∠1=∠2,从而得∠5=∠3,根据∠3+∠4=90°可得答案;(2)先证△ABC≌△EBF得AB=BE,证△ABC∽△EDC得 = ,从而得出答案.
【考点精析】通过灵活运用线段垂直平分线的性质和三角形的外接圆与外心,掌握垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等;过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图. 根据图中提供的信息,解答下列问题:

(1)补全频数分布直方图;
(2)求扇形统计图中m的值和“E”组对应的圆心角度数;
(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A、B是圆O上的两点,∠AOB=120°,C是AB弧的中点.

(1)求证:AB平分∠OAC;
(2)延长OA至P使得OA=AP,连接PC,若圆O的半径R=1,求PC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知:矩形ABCD中,AC、BD是对角线,分别延长AD至E,延长CD至F,使得DE=AD,DF=CD.
(1)求证:四边形ACEF为菱形.
(2)如图2,过E作EG⊥AC的延长线于G,若AG=8,cos∠ECG= ,则AD= (直接填空)、

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,AC=BC,点M在AC边上,且AM=1,MC=4,动点P在AB边上,连接PC,PM,则PC+PM的最小值是( )

A.
B.6
C.
D.7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,…按这样的规律进行下去,A10B10C10D10E10F10的边长为(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).
(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是
(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.
(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.

(1)【发现证明】
小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.
(2)【类比引申】
如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足 系时,仍有EF=BE+FD.
(3)【探究应用】
如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:=1.41,=1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形AOCD绕顶点A(0,5)逆时针方向旋转,当旋转到如图所示的位置时,边BE交边CD于M,且ME=2,CM=4.

(1)求AD的长;
(2)求阴影部分的面积和直线AM的解析式;
(3)求经过A、B、D三点的抛物线的解析式;
(4)在抛物线上是否存在点P,使SPAM=?若存在,求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案