【题目】将分别标有数字1,6,8的三张卡片(卡片除所标注数字外其他均相同)洗匀后,背面朝上放在桌面上.
(1)随机抽取一张卡片,抽到的卡片所标数字是偶数的概率为 ;
(2)随机抽取一张卡片,将卡片上标有的数字作为十位上的数字(不放回),再随机抽取一张卡片,将卡片上标有的数字作为个位上的数字,用列表或画树状图的方法求组成的两位数恰好是“68”的概率.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△AOB,A(0,﹣3),B(﹣2,0).将△OAB先绕点B 逆时针旋转90°得到△BO1A1,再把所得三角形向上平移2个单位得到△B1A2O2;
(1)在图中画出上述变换的图形,并涂黑;
(2)求△OAB在上述变换过程所扫过的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)方法形成
如图①,在四边形ABCD中,AB∥DC,点H是BC的中点,连结AH并延长交DC的延长线于M,则有CM=AB.请说明理由;
(2)方法迁移
如图②,在四边形ABCD中,点H是BC的中点,E是AD上的点,且△ABE和△DEC都是等腰直角三角形,∠BAE=∠EDC=90°.请探究AH与DH之间的关系,并说明理由.
(3)拓展延伸
在(2)的条件下,将Rt△DEC绕点E旋转到图③的位置,请判断(2)中的结论是否依然成立?若成立,请说明理由;若不成立,请举例说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD的边长为3,以点A为圆心,1为半径作圆,E是⊙A上的任意一点,将DE绕点D按逆时针旋转90°,得到DF,连接AF,则AF的最小值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,正方形ABCD的边长为6,菱形EFGH的三个顶点E,G,H分别在正方形ABCD边AB,CD,DA上,AH=2.
(1)写出菱形EFGH的边长的最小值;
(2)请你探究点F到直线CD的距离为定值;
(3)连接FC,设DG=x,△FCG的面积为y;
①求y与x之间的函数关系式并求出y的取值范围;
②当x的长为何值时,点F恰好在正方形ABCD的边上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(阅读材料)
小明遇到这样一个问题:如图1,点P在等边三角形ABC内,且∠APC=150°,PA=3,PC=4,求PB的长.
小明发现,以AP为边作等边三角形APD,连接BD,得到△ABD;由等边三角形的性质,可证△ACP≌△ABD,得PC=BD;由已知∠APC=150°,可知∠PDB的大小,进而可求得PB的长.
(1)请回答:在图1中,∠PDB= °,PB= .
(问题解决)
(2)参考小明思考问题的方法,解决下面问题:
如图2,△ABC中,∠ACB=90°,AC=BC,点P在△ABC内,且PA=1,PB=,PC=,求AB的长.
(灵活运用)
(3)如图3,在Rt△ABC中,∠ACB=90°,∠BAC=α,且tanα=,点P在△ABC外,且PB=3,PC=1,直接写出PA长的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.
(1)求证:EF是⊙O的切线;
(2)求证:AC2=AD·AB;
(3)若⊙O的半径为2,∠ACD=300,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,双曲线y=(x>0)的图象经过点A(,4),直线y=x与双曲线交于B点,过A,B分别作y轴、x轴的垂线,两线交于P点,垂足分别为C,D.
(1)求双曲线的解析式;
(2)求证:△ABP∽△BOD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】旋转变换是解决数学问题中一种重要的思想方法,通过旋转变换可以将分散的条件集中到一起,从而方便解决问题.
已知,△ABC中,AB=AC,∠BAC=α,点D、E在边BC上,且∠DAE=α.
(1)如图1,当α=60°时,将△AEC绕点A顺时针旋转60°到△AFB的位置,连接DF,
①求∠DAF的度数;
②求证:△ADE≌△ADF;
(2)如图2,当α=90°时,猜想BD、DE、CE的数量关系,并说明理由;
(3)如图3,当α=120°,BD=4,CE=5时,请直接写出DE的长为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com