【题目】已知矩形ABCD,作∠ABC的平分线交AD边于点M,作∠BMD的平分线交CD边于点N.
(1)若N为CD的中点,如图1,求证:BM=AD+DM;
(2)若N与C点重合,如图2,求tan∠MCD的值;
(3)若,AB=6,如图3,求BC的长.
【答案】(1)详见解析;(2);
【解析】
(1)如图1,作辅助线,构建全等三角形,证明△DNM≌△CNE(AAS),得DM=CE,证明∠BMN=∠E=67.5°,可得结论;
(2)如图2,当N与C重合时,BC=BM,设AB=x,则BM=BC=x,表示DM的长,根据三角函数定义可得结论;
(3)如图3,延长MN、BC交于点G,根据等腰直角三角形定义可得BM的长,即是BG的长,设CG=m,则DM=2m,表示BC的长,列方程可得结论.
(1)证明:如图1,延长MN、BC交于点E,
∵四边形ABCD是矩形,
∴AD∥BC,AD=BC,∠ABC=90°,
∴∠D=∠NCE,∠DMN=∠NEC,
∵N是DC的中点,
∴DN=CN,
∴△DNM≌△CNE(AAS),
∴DM=CE,
∵BM平分∠ABC,∠ABC=90°,
∴∠ABM=∠MBE=45°,
∵AD∥BC,
∴∠AMB=∠EBM=45°,
∴∠BMD=180°﹣45°=135°,
∵MN平分∠BMD,
∴∠BMN=∠DMN=67.5°,
∴∠E=∠DMN=67.5°,
∴∠BMN=∠E=67.5°,
∴BM=BE=BC+CE=AD+DM;
(2)解:如图2,当N与C重合时,
由(1)知:∠BMC=∠DMN=∠BCM,
∴BC=BM,
设AB=x,则BM=BC=x,
∵AD=BC,
∴DM=x﹣x,
Rt△DMC中,tan∠MCD=;
(3)解:如图3,延长MN、BC交于点G,
∵四边形ABCD是矩形,
∴CD=AB=6,
∵,
∴CN=2,DN=4,
∵△ABM是等腰直角三角形,
∴BM=6,
由(1)知:BM=BG=6,
∵DM∥CG,
∴△DMN∽△CGN,
∴,
设CG=m,则DM=2m,
6=6+2m+m,
m=2﹣2,
∴BC=6+2m=2+4.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点.
(1)求抛物线的解析式;
(2)在第二象限内取一点C,作CD垂直x轴于点D,连接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,OA、OB是⊙O的两条半径,OA⊥OB,C是半径OB上一动点,连接AC并延长交⊙O于D,过点D作圆的切线交OB的延长线于E,已知OA=6.
(1)求证:∠ECD=∠EDC;
(2)若BC=2OC,求DE长;
(3)当∠A从15°增大到30°的过程中,求弦AD在圆内扫过的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题满分8分)
为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动.学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:
请根据图表信息回答下列问题:
(1)频数分布表中的 , ;
(2)将频数分布直方图补充完整;
(3)学校将每周课外阅读时间在小时以上的学生评为“阅读之星”,请你估计该校名学生中评为“阅读之星”的有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,正方形A1B1C1D1,D1E1E2B2,A2D2C2D2,D2E3E4B3,A3B3C3D3,…,按如图所示的方式放置,其中点B1在y轴上,点C1,E1,E2,C2,E3,E4,C3,…,在x轴上已知正方形A1,B1,C1,D1,的边长为1,∠OB1C1=30°,B1C1∥B2C2∥B3C3,…,则正方形AnBnnDn的边长是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,矩形ABCD,AB=2,BC=4,对角线AC,BD相交于点O,点P在对角线BD上,并且A,O,P组成以OP为腰的等腰三角形,那么OP的长等于___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,二次函数y=ax2+bx+的图象经过点A(2,6)和B(4,4),直线l经过点B并与x轴垂直,垂足为Q.
(1)求二次函数的表达式;
(2)如图1,作AK⊥x轴,垂足为K,连接AO,点R是直线1上的点,如果△AOK与以O,Q,R为顶点的三角形相似,请直接写出点R的纵坐标;
(3)如图2,正方形CDEF的顶点C是第二象限抛物线上的点,点D,E在直线1上,以CF为底向右做等腰△CFM,直线l与CM,FM的交点分别是G,H,并且CG=GM,FH=HM,连接CE,与FM的交点为N,且点N的纵坐标是﹣1.
求:①tan∠DCG的值;
②点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班6个合作小组的人数分别是4,6,4,5,7,8,现第4小组调出1人去第2小组,则新各组人数分别为:4,7,4,4,7,8,下列关于调配后的数据说法正确的是( )
A. 调配后平均数变小了B. 调配后众数变小了
C. 调配后中位数变大了D. 调配后方差变大了
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,△ABC是等腰三角形,O是底边BC中点,腰AB与⊙O相切于点D
(1)求证:AC是⊙O的切线;
(2)如图2,连接CD,若tan∠BCD=,⊙O的半径为,求BC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com