精英家教网 > 初中数学 > 题目详情

【题目】如果反比例函数的图象经过点(32),那么下列各点中在此函数图象上的点是(

A.-3B.9C.-2D.6

【答案】B

【解析】

设该反比例函数的解析式为,利用待定系数法求出反比例函数解析式,然后将各选项中的点的横、纵坐标相乘,判断是否满足解析式即可.

解:设该反比例函数的解析式为

将(32)代入,得

解得:k=6

∴反比例函数的解析式为

A 因为-×3=-6,所以(-3)不在此反比例函数图象上,故本选项不符合题意;

B 因为9×=6,所以(9)在此反比例函数图象上,故本选项符合题意;

C 因为-×2=-6,所以(-2)不在此反比例函数图象上,故本选项不符合题意;

D 因为6×=9,所以(6)不在此反比例函数图象上,故本选项不符合题意.

故选B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】等腰三角形一底角平分线与另一腰所成锐角为75°,则等腰三角形的顶角的大小为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在平面直角坐标系中,四边形ABCD是长方形,∠A=∠B=∠C=∠D=90°,AB∥CD,AB=CD=8cm,AD=BC=6cm,D点与原点重合,坐标为(0,0)

(1)写出点B的坐标;

(2)动点P从点A出发以每秒3个单位长度的速度向终点B匀速运动,动点Q从点C出发以每秒4个单位长度的速度沿射线CD方向匀速运动,若P,Q两点同时出发,设运动时间为t,当t为何值时,PQ∥BC;

(3)在Q的运行过程中,当Q运动到什么位置时,使△ADQ的面积为9,求此时Q点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某单位为响应政府发出的全民健身的号召打算在长和宽分别为20 m和11 m的矩形大厅内修建一个60 m2的矩形健身房ABCD.该健身房的四面墙壁中有两侧沿用大厅的旧墙壁(如图为平面示意图)已知装修旧墙壁的费用为20元/m2新建(含装修)墙壁的费用为80元/m2.设健身房的高为3 m一面旧墙壁AB的长为x m修建健身房墙壁的总投入为y元.

(1)求y与x的函数关系式

(2)为了合理利用大厅要求自变量x必须满足条件:8≤x≤12当投入的资金为4800元时问利用旧墙壁的总长度为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题的提出:

如果点是锐角内一动点,如何确定一个位置,使点到△ABC的三顶点的距离之和的值为最小?

1)问题的转化:

绕点逆时针旋转得到,连接,这样就把确定的最小值的问题转化成确定的最小值的问题了,请你利用图1证明:

2)问题的解决:

当点到锐角的三顶点的距离之和的值为最小时,求的度数.

问题的延伸:

3)如图2所示,在钝角中,,点是这个三角形内一动点,请你利用以上方法,求点到这个三角形各顶点的距离之和的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=-2x+80.设这种产品每天的销售利润为w元.
(1)求w与x之间的函数关系式;
(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连结CE.

(1)求证:BD=EC;
(2)若AC=2, , 求菱形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2020年拟继续举办丽水市中学生汉字听写、诗词诵写大赛.经过初赛、复赛,选出了两个代表队参加市内7月份的决赛.两个队各选出的名选手的复赛成绩如图所示.

1)根据图示补全下表;

平均数()

中位数()

众数()

2)结合两队成绩的平均数和中位数,分析哪个队的复赛成绩较好;

3)计算两队成绩的方差,并判断哪一个代表队选手成绩较为稳定.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形中,的中点,将绕点逆时针旋转后,点落在的延长线上点处,点落在点处.再将线段绕点顺时针旋转得线段,连接

1)求证:

2)求点,点在旋转过程中形成的与线段所围成的阴影部分的面积.

查看答案和解析>>

同步练习册答案