精英家教网 > 初中数学 > 题目详情
13.已知:矩形ABCD中,AD=2AB,E是AD中点,M为CD上的一点,PE⊥EM交CB于点P,EN平分∠PEM交BC于点N.
(1)通过观察或测量BP与CM的长度,你能得到什么结论,不必证明;
(2)求证:BP2+CN2=PN2
(3)过点P作PG⊥EN于点G,判断点G与△EDM的外接圆的位置关系?并说明理由.

分析 (1)利用已知利用刻度尺度量即可得出答案;
(2)利用全等三角形的判定与性质得出△BEP≌△CEM(ASA),进而得出△EPN≌△EMN(SAS),即可得出答案;
(3)首先判断出P、G、M三点共线,且G为PM的中点,然后利用直角三角形的性质得出GK=DK=EK=MK,即可得出答案.

解答 解:(1)结论:BP=CM;

(2)证明:如图1,连接BE、CE,
∵四边形ABCD为矩形,AD=2AB,E为AD中点,
∴∠A=∠ABC=90°,AB=CD=AE=DE,
∴∠AEB=45°,∠DEC=45°,
在△ABE和△DCE中,
$\left\{\begin{array}{l}{AB=CD}\\{∠AEB=∠DEC}\\{AE=DE}\end{array}\right.$,
∴△ABE≌△DCE(SAS),∠BEC=90°,
∴BE=CE,
∴∠EBC=∠ECB=45°,
∴∠EBC=∠ECD,
又∵∠BEC=∠PEM=90°,
∴∠BEP=∠MEC,
在△BEP和△CEM中,
$\left\{\begin{array}{l}{∠EBP=∠ECM}\\{BE=CE}\\{∠BEP=∠CEM}\end{array}\right.$,
∴△BEP≌△CEM(ASA),
∴BP=MC,PE=ME,
∵EN平分∠PEM,
∴∠PEN=∠MEN=$\frac{1}{2}$=45°,
在△EPN和△EMN中,
$\left\{\begin{array}{l}{PE=ME}\\{∠PEN=∠MEN}\\{NE=NE}\end{array}\right.$,
∴△EPN≌△EMN(SAS),
∴PN=MN,
在Rt△MNC中有:MC2+NC2=MN2
∴BP2+NC2=PN2

(3)点G在△EDM的外接圆上,
理由:如图2,连接BE、CE、PM,
由(2),可得
PN=MN,PE=ME,
∴EN垂直平分PM,PG⊥EN,
∴P、G、M三点共线,且G为PM的中点,
∵K为EM中点,
∴GK=$\frac{1}{2}$ME,
又∵∠ADC=90°,
∴DK=$\frac{1}{2}$ME,
∴GK=DK=EK=MK,
∴点G在以K为圆心,DK为半径的圆上,即点G在△EDM的外接圆上.

点评 此题主要考查了四边形综合以及全等三角形的判定与性质以及直角三角形的性质等知识,根据题意得出△EPN≌△EMN进而结合勾股定理得出结论是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.如图,在平面直角坐标系中,OA=OB=OC=8,过点A的直线AD交BC于点D,交y轴与点G,△ABD的面积为△ABC面积的$\frac{1}{4}$.
(1)求点D的坐标;
(2)过点C作CE⊥AD,交AB交于F,垂足为E.求证:OF=OG;
(3)若点F的坐标为($\frac{8}{7}$,0),在第一象限内是否存在点P,使△CFP是以CF为腰长的等腰直角三角形?若存在,请求出点P坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,⊙O是△ABC的内切圆,切点分别为D、E、F,∠B=60°,∠C=70°,求∠EDF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.抛物线y=2(x-2)2-6的顶点坐标是(2,-6).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.7200″=120分=2度;37°19′12″=37.32度.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.已知⊙O的直径为6,直线l上有一点P满足PO=3,则直线l与⊙O的位置关系(  )
A.相切B.相离C.相切或相交D.相离或相切

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知点A(3,0),B(0,1),以线段AB为直角边在第一象限内作等腰直角△ABC,∠BAC=90°,且点P(2,a)为平面直角坐标系中一动点.
(1)请说明不论当a取何值时,△BOP的面积是一个常数.
(2)要使得△ABC的面积和△ABP的面积相等,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2-4ac>0;②abc>0;③b=-2a;④9a+3b+c<0. 其中,正确结论的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.(1)如图,要搭建一个矩形的自行车棚,一边靠墙,另外三边围栏材料的总长为60m,怎样围才能使车棚的面积最大?
(2)在(1)中,如果可利用的墙壁长为25m,怎样围才能使车棚的面积最大?
题(2)与题(1)的解答完全相同吗?试比较并作出正确的解答,和同学交流.

查看答案和解析>>

同步练习册答案