精英家教网 > 初中数学 > 题目详情

【题目】如图,A为反比例函数y(其中x0)图象上的一点,在x轴正半轴上有一点BOB4.连接OAAB,且OAAB2

1)求k的值;

2)过点BBCOB,交反比例函数yx0)的图象于点C

连接AC,求△ABC的面积;

在图上连接OCAB于点D,求的值.

【答案】1k12;(2①3

【解析】

(1)过点AAHx轴,垂足为点HAHOC于点M,利用等腰三角形的性质可得出DH的长,利用勾股定理可得出AH的长,进而可得出点A的坐标,再利用反比例函数图象上点的坐标特征即可求出k值;

(2)①由三角形面积公式可求解;

②由OB的长,利用反比例函数图象上点的坐标特征可得出BC的长,利用三角形中位线定理可求出MH的长,进而可得出AM的长,由AMBC可得出△ADM∽△BDC,利用相似三角形的性质即可求出的值.

(1)过点AAHx轴,垂足为点HAHOC于点M,如图所示.

OA=ABAHOB

∴点A的坐标为(26).

A为反比例函数图象上的一点,

(2)BCx轴,OB=4,点C在反比例函数上,

AHOB

AHBC

∴点ABC的距离=BH=2

SABC

BCx轴,OB=4,点C在反比例函数上,

AHBCOH=BH

MH=BC=

AMBC

∴△ADM∽△BDC

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx﹣3a经过点A﹣10)、C03),与x轴交于另一点B,抛物线的顶点为D

1)求此二次函数解析式;

2)连接DCBCDB,求证:△BCD是直角三角形;

3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:

项目

月功能费

基本话费

长途话费

短信费

金额/

5

25

1)该月小王手机话费共有多少元?

2)扇形统计图中,表示短信费的扇形的圆心角为多少度?

3)请将表格补充完整;

4)请将条形统计图补充完整.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数为常数,且)中的的部分对应值如下表:

以下结论:

①二次函数有最小值为

②当时,的增大而增大;

③二次函数的图象与轴只有一个交点;

④当时,.

其中正确的结论有( )个

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①所示,已知正方形ABCD和正方形AEFG,连接DGBE

1)发现:当正方形AEFG绕点A旋转,如图②所示.

①线段DGBE之间的数量关系是   

②直线DG与直线BE之间的位置关系是   

2)探究:如图③所示,若四边形ABCD与四边形AEFG都为矩形,且AD2ABAG2AE时,上述结论是否成立,并说明理由.

3)应用:在(2)的情况下,连接BGDE,若AE1AB2,求BG2+DE2的值(直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,角α的两边与双曲线y=k0x0)交于AB两点,在OB上取点C,作CDy轴于点D,分别交双曲线y=、射线OA于点EF,若OA=2AFOC=2CB,则的值为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,一次函数y=﹣x+b的图象与反比例函数y=﹣在第二象限内的图象相交于点A,与x轴的负半轴交于点B,与y轴的负半轴交于点C

1)求∠BCO的度数;

2)若y轴上一点M的纵坐标是4,且AMBM,求点A的坐标;

3)在(2)的条件下,若点Py轴上,点Q是平面直角坐标系中的一点,当以点AMPQ为顶点的四边形是菱形时,请直接写出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,活动课上,小玥想要利用所学的数学知识测量某个建筑地所在山坡AE的高度,她先在山脚下的点E处测得山顶A的仰角是30°,然后,她沿着坡度i=1:1的斜坡按速度20/分步行15分钟到达C处,此时,测得点A的俯角是15°.图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上,求出建筑地所在山坡AE的高度AB.(精确到0.1米,参考数据:≈1.41).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角β=60°,求树高AB(结果保留根号)

查看答案和解析>>

同步练习册答案