【题目】如图,已知BC∥GE,AF∥DE,点D在直线BC上,点F在直线GE上,且∠1=50°.
(1)求∠AFG的度数;
(2)若AQ平分∠FAC,交直线BC于点Q,且∠Q=18°,则∠ACB的度数为______°.(直接写出答案)
【答案】(1)50°;(2)86.
【解析】
(1)先根据BC∥EG得出∠E=∠1=50°,再由AF∥DE可知∠AFG=∠E=50°;
(2)作AM∥BC,由平行线的传递性可知AM∥EG,故∠FAM=∠AFG,再根据AM∥BC可知∠QAM=∠Q,故∠FAQ=∠FAM+∠QAM,再根据AQ平分∠FAC可知∠MAC=∠QAC+∠QAM=86°,根据AM∥BC即可得出结论.
(1)∵BC∥EG,
∴∠E=∠1=50°.
∵AF∥DE,
∴∠AFG=∠E=50°;
(2)作AM∥BC,
∵BC∥EG,
∴AM∥EG,
∴∠FAM=∠AFG=50°.
∵AM∥BC,
∴∠QAM=∠Q=18°,
∴∠FAQ=∠FAM+∠QAM=68°.
∵AQ平分∠FAC,
∴∠QAC=∠FAQ=68°,
∴∠MAC=∠QAC+∠QAM=86°.
∵AM∥BC,
∴∠ACB=∠MAC=86°
故答案为:86.
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC与△CDE都是等边三角形,点B、C、D在同一直线上,AD与BE相交于点G,BE与AC相交于点F,AD与CE相交于点H,则下列结论:①△ACD≌△BCE;②∠AGB=60°;③BF=AH;④△CFH是等边三角形;⑤连CG,则∠BGC=∠DGC ;⑥EG+GC=GD. 其中正确的有________.(只要写序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是长方形纸带,将纸带沿EF折叠成图2,再沿BF折叠成图3.
(1)若∠DEF=20°,则图3中∠CFE度数是多少?
(2)若∠DEF=a,把图3中∠CFE用a表示.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD的对角线AC⊥BD于点E,AB=BC,F为四边形ABCD外一点,且∠FCA=90°,∠CBF=∠DCB.
(1)求证:四边形DBFC是平行四边形;
(2)如果BC平分∠DBF,∠CDB=45°,BD=2,求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(理解新知)
如图①,已知,在内部画射线,得到三个角,分别为、、,若这三个角中有一个角是另外一个角的2倍,则称射线为的“2倍角线”
(1)角的平分线 这个角的“2倍角线”;(填“是”或“不是”)
(2)若,射线为的“2倍角线”,则 ;
(解决问题)
如图②,已知,射线从出发,以每秒的速度绕点逆时针旋转:射线从出发,以每秒的速度绕点顺时针旋转,射线、同时出发,当一条射线回到出发位置的时候,整个运动随之停止.设运动的时间为.
(3)当射线、旋转到同一条直线上时,求的值;
(4)若、、三条射线中,一条射线恰好是以另外两条射线为边的角的“2倍角线”,直接写出所有可能的的值.(本题中所研究的角都是小于等于的角.)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线l:y= (x﹣h)2﹣2与x轴交于A,B两点(点A在点B的左侧),将抛物线ι在x轴下方部分沿轴翻折,x轴上方的图象保持不变,就组成了函数的图象.
(1)若点A的坐标为(1,0).
①求抛物线l的表达式,并直接写出当x为何值时,函数的值y随x的增大而增大;
②如图2,若过A点的直线交函数的图象于另外两点P,Q,且S△ABQ=2S△ABP , 求点P的坐标;
(2)当2<x<3时,若函数f的值随x的增大而增大,直接写出h的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】交警通常根据刹车后轮滑行的距离来测算车辆行驶的速度,所用的经验公式是u=16.其中u表示车速(单位:km/h),d表示刹车距离(单位:m),f表示摩擦系数.在一次交通事故中,测得d=20m,f=1.44,而发生交通事故的路段限速为80km/h,肇事汽车是否违规超速行驶?说明理由.(参考数据:≈1.4,≈2.2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解答下列应用题:
⑴某房间的面积为17.6m2,房间地面恰好由110块相同的正方形地砖铺成,每块地砖的边长是多少?
⑵已知第一个正方体水箱的棱长是60cm,第二个正方体水箱的体积比第一个水箱的体积的3倍还多81000 cm3,则第二个水箱需要铁皮多少平方米?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com