【题目】如图,在△ABC中,AE为∠BAC的角平分线,点D为BC的中点,DE⊥BC交AE于点E,EG⊥AC于点G.
(1)求证: AB+AC=2AG.
(2)若BC=8cm,AG=5cm,求△ABC的周长.
【答案】(1)见解析;(2)18cm
【解析】
(1)连接BE、EC,只要证明Rt△BFE≌Rt△CGE,得BF=CG,再证明Rt△AFE≌Rt△AGE得:AF=AG,根据线段和差定义即可解决.
(2由AG=5cm可得AB+AC=10cm即可得出△ABC的周长.
(1)延长AB至点M,过点E作EF⊥BM于点F
∵AE平分∠BAC
EG⊥AC于点G
∴EG=EF,∠EFB=∠EGC=90°
连接BE,EC
∵点D是BC的中点,DE⊥BC
∴BE=EC
在Rt△BFE与Rt△CGE中
∴Rt△BFE≌Rt△CGE(HL)
∴BF=GC
∵AB+AC=AB+AG+GC
∴AB+AC =AB+BF+AG
=AF+AG
在Rt△AFE与Rt△AGE中
∴Rt△AFE≌Rt△AGE(HL)
∴AF=AG
∴AB+AC=2AG
(2)∵AG=5cm, AB+AC=2AG
∴AB+AC=10cm
又∵BC=8cm
∴△ABC的周长为AB+AC+BC=8+10=18cm.
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b与反比例函数y=(x>0)的图象相交于A(2,3)、B(a,1)两点.
(1)求这两个函数的表达式;
(2)求证:AB=2BC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是“作已知三角形的高”的尺规作图过程.
已知: .
求作: 边上的高
作法:如图,
(1)分别以点和点为圆心,大于的长为半径作弧,两弧相交于, 两点;
(2)作直线,交于点;
(3)以为圆心, 为半径⊙O,与CB的延长线交于点D,连接AD,线段AD即为所作的高.
请回答;该尺规作图的依据是___________________________________________________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD,点E在BC边上,将△DCE绕某点G旋转得到△CBF,点F恰好在AB边上.
(1)请画出旋转中心G (保留画图痕迹),并连接GF,GE;
(2)若正方形的边长为2a,当CE= 时,S△FGE=S△FBE;当CE= 时,S△FGE=3S△FBE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,O 为坐标原点,P是反比例函数图象上任意一点,以P为圆心,PO为半径的圆与x轴交于点 A、与y轴交于点B,连接AB.
(1)求证:P为线段AB的中点;
(2)求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,反比例函数的图象与边长是6的正方形OABC的两边AB、BC分别相交于M、N两点,△OMA的面积为6.
(1)求反比例函数的解析式;
(2)若动点P在x轴上,求PM+PN的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图 1,在平面直角坐标系中,直线l1:yx5与x轴,y轴分别交于A.B两点.直线l2:y4xb与l1交于点 D(-3,8)且与x轴,y轴分别交于C、E.
(1)求出点A坐标,直线l2的解析式;
(2)如图2,点P为线段AD上一点(不含端点),连接CP,一动点Q从C出发,沿线段CP 以每秒1个单位的速度运动到点P,再沿着线段PD以每秒个单位的速度运动到点D停止,求点Q在整个运动过程中所用最少时间与点P的坐标;
(3)如图3,平面直角坐标系中有一点G(m,2),使得SCEGSCEB,求点G的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某河的两岸PQ、MN互相平行,河岸PQ上的点A处和点B处各有一棵大树,AB=30米,某人在河岸MN上选一点C,AC⊥MN,在直线MN上从点C前进一段路程到达点D,测得∠ADC=30°,∠BDC=60°,求这条河的宽度.(≈1.732,结果保留三个有效数字).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com