精英家教网 > 初中数学 > 题目详情

【题目】如图,点M为线段AB的中点,AEBD交于点C,∠DME=∠A=∠B,且DMAC于点FMEBC于点G.写出图中的所有相似三角形,并选择一对加以证明.

【答案】AMF∽△BGM,△DMG∽△DBM,△EMF∽△EAM证明见解析.

【解析】

根据相似三角形的判定定理可以直接写出图中有3对相似三角形可以利用相似三角形的判定定理两组角对应相等的两个三角形相似来证明△AMF∽△BGM

图中的相似三角形有:△AMF∽△BGM,△DMG∽△DBM,△EMF∽△EAM

以下证明△AMF∽△BGM

∵∠AFM=∠DME+∠E(外角定理),∠DME=∠A=∠B(已知),∴∠AFM=∠DME+∠E=∠A+∠E=∠BMG,∠A=∠B,∴△AMF∽△BGM

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知扇形AOB中,OA=3,∠AOB=120°,C是在上的动点.以BC为边作正方形BCDE,当点C从点A移动至点B时,点D经过的路径长是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说法正确的是(  )

A. 两个转盘转出蓝色的概率一样大

B. 如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了

C. 先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率不同

D. 游戏者配成紫色的概率为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,四边形为平行四边形,为坐标原点,,将平行四边形绕点逆时针旋转得到平行四边形,点的延长线上,点落在轴正半轴上.

(1)证明:是等边三角形:

(2)平行四边形绕点逆时针旋转的对应线段为,的对应点为

①直线轴交于点,为等腰三角形,求点的坐标:

②对角线在旋转过程中设点坐标为,当点轴的距离大于或等于时,求的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校奖励给王伟和李丽上海世博园门票共两张,其中一张为指定日门票,另一张为普通日门票。王伟和李丽分别转动下图的甲、乙两个转盘(转盘甲被二等分、转盘乙被三等分)确定指定日门票的归属,在两个转盘都停止转动后,若指针所指的两个数字之和为 偶数,则王伟获得指定日门票;若指针所指的两个数字之和为奇数,则李丽获得指定日门票;若指针指向分隔线,则重新转动。你认为这个方法公平吗?请画树状图或列表,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把一副三角板如图放置,E是AB的中点,连接CE、DE、CD,F是CD的中点,连接EF.若AB=8,则SCEF_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于一元二次方程,下列说法:①若a+c=0,方程有两个不等的实数根;②若方程有两个不等的实数根,则方程也一定有两个不等的实数根;③若c是方程的一个根,则一定有成立;④若m是方程的一个根,则一定有成立.其中正确地只有 ( )

A. ①② B. ②③ C. ③④ D. ①④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,己知正方形ABCD的边长为4, P是对角线BD上一点,PE⊥BC于点E, PF⊥CD于点F,连接AP, EF.给出下列结论:①PD=EC:②四边形PECF的周长为8;③△APD一定是等腰三角形:④AP=EF⑤EF的最小值为⑥AP⊥EF.其中正确结论的序号为(

A. ①②④⑤⑥B. ①②④⑤

C. ②④⑤D. ②④⑤⑥

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,BA=BC,以AB为直径的⊙O分别交ACBC于点DEBC的延长线与⊙O的切线AF交于点F

(1)求证:∠ABC=2CAF

(2)若AC=2CEEB=1:4,求CEAF的长.

查看答案和解析>>

同步练习册答案