【题目】曲靖市某楼盘准备以每平方米4000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米3240元的均价开盘销售.
(1)求平均每次下调的百分率;
(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.9折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.4元,请问哪种方案更优惠?
【答案】(1)平均每次下调的百分率是10%;
(2)选择方案②更优惠,理由见解析.
【解析】试题分析:
(1)设平均每次下调的百分率为,根据题意列出一元二次方程,解方程即可得到符合要求的答案;
(2)根据题意分别计算出两种方案的优惠金额,在比较大小即可得到答案;
试题解析:
(1)设平均每次下调的百分率是x,依题意得:
4000(1﹣x)2=3240 ,解得:x=0.1=10%或x=1.9(不合题意,舍去)
∴平均每次下调的百分率是10%
(2)方案①优惠金额=100×3240×(1﹣99%)=3240元;
方案②优惠金额=100×1.4×12×2=3360元;
∵3360>3240,
故选择方案②更优惠.
科目:初中数学 来源: 题型:
【题目】一副直角三角尺叠放如图 1 所示,现将 45°的三角尺ADE 固定不动,将含 30°的三角尺 ABC 绕顶点 A 顺时针转动(旋转角不超过 180 度),使两块三角尺至少有一组边互相平行.如图 2:当∠BAD=15°时,BC∥DE.则∠BAD(0°<∠BAD<180°)其它所有可能符合条件的度数为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司销售一种进价为元/个的计算器,其销售量(万个)与销售价格(元/个)的变化如下表:
价格(元/个) | ||||||
销售量(万个) |
同时,销售过程中的其他开支(不含造价)总计万元.
()观察并分析表中的与之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出(万个)与(元/个)的函数解析式.
()求出该公司销售这种计算器的净得利润(万个)与销售价格(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?
()该公司要求净得利润不能低于万元,请写出销售价格(元/个)的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件,其中甲种奖品每件40元,乙种奖品每件30元.
(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件;
(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5剑,他们的总成绩单位:环相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差见小宇的作业.
______,______;
请完成图中乙成绩变化情况的折线;
观察你补全的折线图可以看出______填“甲”或“乙”的成绩比较稳定参照小宇的计算方法,计算乙成绩的方差,并验证你的判断;并判断谁将被选中.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程k2x2﹣2(k+1)x+1=0有两个实数根.
(1)求k的取值范围;
(2)当k=1时,设所给方程的两个根分别为x1和x2,求(x1﹣2)(x2﹣2)的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.
(1)求甲、乙两种型号的机器人每台的价格各是多少万元;
(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划最多用41万元购买8台这两种型号的机器人,则该公司该如何购买,才能使得每小时的分拣量最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AH⊥BC,BF平分∠ABC,BE⊥BF,EF∥BC,以下四个结论①AH⊥EF,②∠ABF=∠EFB,③AC∥BE,④∠E=∠ABE.正确的是( )
A. ①②③④ B. ①② C. ①③④ D. ①②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com