精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,ADC的周长为9cm,ABC的周长是(

A. 10cm B. 12cm C. 15cm D. 17cm

【答案】C

【解析】

DE△ABC中边AB的垂直平分线,根据线段垂直平分线的性质,即可得BD=ADAB=2AE,又由△ADC的周长为9cm,即可得AC+BC=9cm,继而求得△ABC的周长.

解答:解:∵DE△ABC中边AB的垂直平分线,

∴AD=BDAB=2AE=2×3=6cm),

∵△ADC的周长为9cm

AD+AC+CD=BD+CD+AC=BC+AC=9cm

∴△ABC的周长为:AB+AC+BC=6+9=15cm).

∴△ABC的周长为15cm

故答案选C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知一个底面为菱形的直棱柱,高为10cm,体积为150cm3 , 则这个棱柱的下底面积为cm2;若该棱柱侧面展开图的面积为200cm2 , 记底面菱形的顶点依次为A,B,C,D,AE是BC边上的高,则CE的长为cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在下列各图中,点 O 为直线 AB 上一点,∠AOC=60°,直角三角板的直角顶点放在点处.

(1)如图 1,三角板一边 OM在射线 OB 上,另一边 ON在直线 AB的下方,求∠BOC的度数,∠CON 的度数;

(2)如图 2,三角板一边OM恰好在∠BOC的角平分线OE上,另一边ON在直线 AB的下方,求此时∠BON 的度数;

(3)请从下列(A),(B)两题中任选一题作答. 我选择哪一题.

(A)在图 2 中,延长线段 NO 得到射线 OD,如图 3,求∠AOD 的度数;写出∠DOC 与∠BON 的数量关系;

(B)如图 4,MN⊥AB,ON 在∠AOC 的内部,若另一边 OM 在直线 AB 的下方, 求∠COM+∠AON 的度数;∠AOM﹣∠CON 的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,两个等腰直角△ABC△CDE中,∠ACB=∠DCE=90°.

(1)观察猜想如图1,点EBC上,线段AEBD的数量关系,位置关系

(2)探究证明把△CDE绕直角顶点C旋转到图2的位置,(1)中的结论还成立吗?说明理由;

(3)拓展延伸:把△CDE绕点C在平面内自由旋转,若AC=BC=13,DE=10,当A、E、D三点在直线上时,请直接写出AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知直线l1l2直线l3和直线l1l2分别交于点CDP在直线l3

(1)若点PCD两点之间运动PACAPBPBD之间的关系是否发生变化?若变化请说明理由;若不变请求出它们之间的关系式

(2)若点PCD两点的外侧运动(P与点CD不重合),则∠PACAPBPBD之间的关系又如何?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届汉字听写大赛,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:

组别

成绩(分)

频数(人数)

频率

2

0.04

10

0.2

14

b

a

0.32

8

0.16

请根据表格提供的信息,解答以下问题:

(1)本次决赛共有 名学生参加;

(2)直接写出表中a= ,b= ;

(3)请补全下面相应的频数分布直方图;

(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(﹣2,4),过点A作AB⊥y轴,垂足为B,连接OA.

(1)求△OAB的面积;
(2)若抛物线y=﹣x2﹣2x+c经过点A.
①求c的值;
②将抛物线向下平移m个单位,使平移后得到的抛物线顶点落在△OAB的内部(不包括△OAB的边界),求m的取值范围(直接写出答案即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展.现用4个全等的直角三角形拼成如图所示“弦图”.RtABC中,∠ACB=90°,若,请你利用这个图形解决下列问题:

(1)试说明

(2)如果大正方形的面积是10,小正方形的面积是2,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,圆柱的高是4cm,当圆柱底面半径r(cm)变化时,圆柱的体积V(cm3)也随之变化.

(1)在这个变化过程中,写出自变量,因变量;

(2) 写出圆柱的体积V与底面半径r的关系式;

(3)当圆柱的底面半径由2cm变化到8cm时,圆柱的体积由多少cm3变化到多少cm3.

查看答案和解析>>

同步练习册答案