【题目】已知一个底面为菱形的直棱柱,高为10cm,体积为150cm3 , 则这个棱柱的下底面积为cm2;若该棱柱侧面展开图的面积为200cm2 , 记底面菱形的顶点依次为A,B,C,D,AE是BC边上的高,则CE的长为cm.
【答案】15;1或9
【解析】解:∵底面为菱形的直棱柱,高为10cm,体积为150cm3 , ∴这个棱柱的下底面积为:150÷10=15(cm2);
∵该棱柱侧面展开图的面积为200cm2 , 高为10cm,
∴底面菱形的周长为:200÷10=20(cm),
∴AB=BC=CD=AD=20÷4=5(cm),
∴AE=S菱形ABCD÷BC=15÷5=3(cm),
∴BE= =4(cm),
∴如图1:EC=BC﹣BE=5﹣4=1(cm),
如图2:EC=BC+BE=5+4=9(cm),
所以答案是:15;1或9.
【考点精析】解答此题的关键在于理解认识立体图形的相关知识,掌握有些几何图形的各个部分不都在同一平面内,它们是立体图形,以及对几何体的展开图的理解,了解沿多面体的棱将多面体剪开成平面图形,若干个平面图形也可以围成一个多面体;同一个多面体沿不同的棱剪开,得到的平面展开图是不一样的,就是说:同一个立体图形可以有多种不同的展开图.
科目:初中数学 来源: 题型:
【题目】用同样大小的围棋子按如图所示的方式摆图案,按照这样的规律摆下去,第12个图案的围棋子个数是( )
A. 16 B. 28 C. 29 D. 38
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:
(Ⅰ)图1中a的值为 ;
(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;
(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】王红有5张写着以下数字的卡片,请按要求抽出卡片,完成下列各题:
(1)从中取出2张卡片,使这2张卡片上数字乘积最小,最小值是 .
(2)从中取出2张卡片,使这2张卡片数字相除商最大,最大值是 .
(3)从中取出除0以外的4张卡片,将这4个数字进行加、减、乘、除或乘方等混合运算,使结果为24,(注:每个数字只能用一次,如:23×[1﹣(﹣2)]),请另写出一种符合要求的运算式子 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A、C、N三点在同一直线上,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,若△MNC≌△ABC,则∠BCM:∠BCN=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(3,4).
(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1;
(2)请画出△ABC关于x轴对称的△A2B2C2三个顶点A2、B2、C2的坐标;
(3)在x轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系内,反比例函数和二次函数y=k(x2+x﹣1)的图象交于点A(1,k)和点B(﹣1,﹣k).
(1)当k=﹣2时,求反比例函数的解析式;
(2)要使反比例函数和二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围;
(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.
(4)点C为x轴上一动点,且C点坐标为(2k,0),当△ABC是以AB为斜边的直角三角形时,求K的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1)(﹣20)+(+3)﹣(﹣5)
(2)(﹣5)×6×÷(﹣2)
(3)﹣÷﹣×(﹣9)
(4)(﹣1)4+5÷(﹣)×(﹣6)
(5)(+﹣)×36
(6)﹣1﹣[1+(﹣12)÷6]×(﹣)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是( )
A. 10cm B. 12cm C. 15cm D. 17cm
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com