精英家教网 > 初中数学 > 题目详情
18.填空:
如图,已知∠1+∠2=180°,∠3=∠B,求证:∠AED=∠ACB.
证明:∵∠1+∠2=180°(已知)
∠1+∠4=180°(邻补角的定义)
∴∠2=∠4(同角的补角定义)
∴AB∥EF (内错角相等,两直线平行)
∴∠3=∠ADE(两直线平行,内错角相等)
又∵∠3=∠B(已知)
∴∠B=∠ADE(等量代换)
∴DE∥BC (同位角相等,两直线平行)
∴∠AED=∠ACB (两直线平行,同位角相等).

分析 由条件可先证明EF∥AB,再利用平行线的性质可得到∠3=∠ADE=∠B,可证明DE∥BC,可证得∠AED=∠ACB,据此填空即可.

解答 证明:∵∠1+∠2=180°(已知)
∠1+∠4=180°(邻补角的定义)
∴∠2=∠4(同角的补角定义)
∴AB∥EF(内错角相等,两直线平行)
∴∠3=∠ADE(两直线平行,内错角相等)
又∵∠3=∠B(已知)
∴∠B=∠ADE(等量代换)
∴DE∥BC(同位角相等,两直线平行)
∴∠AED=∠ACB(两直线平行,同位角相等).
故答案为:∠4;∠4;内错角相等,两直线平行;∠ADE;两直线平行,内错角相等;∠ADE;同位角相等,两直线平行;两直线平行,同位角相等.

点评 本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①同位角相等?两直线平行,②内错角相等?两直线平行,③同旁内角互补?两直线平行,④a∥b,b∥c⇒a∥c.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.已知:如图,在△ABC中,∠BAC=120°,以BC为边向形外作等边三角形BCD,把△ABD绕着点D按顺时针方向旋转60°后得到△ECD,若AB=5,AC=3,求∠BAD的度数与AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.(1)解不等式组$\left\{\begin{array}{l}{2x+4≥0}\\{\frac{x-3}{2}+3>x+1}\end{array}\right.$,并写出该不等式组的最大整数解.
(2)先化简,再求值:$\frac{a-1}{a}$÷(a-$\frac{2a-1}{a}$),其中a=$\sqrt{2}$+1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在△ABC中,AD⊥BC于点D,∠ABD=45°,在AD上取一点E,连接BE,使得BE=AC,连接CE,将线段CA绕点C逆时针旋转90°,到达CF的位置,连接BF.已知∠CAD=∠BCF.
(1)试判断DE与CD之间的数量关系,并说明理由;
(2)求证:四边形BFCE是平行四边形;
(3)若BC=7,DE=2,求线段CA旋转过程中扫过的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,一次函数y=-x+4的图象与反比例函数y=$\frac{k}{x}$(k为常数,且k≠0)的图象交于A(1,a),B(3,b)两点.
(1)求反比例函数的表达式;
(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标;
(3)求△PAB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.($\frac{1}{2}$)-2+(-$\frac{1}{2}$)0=3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.若x是整数,且满足不等式组$\left\{\begin{array}{l}{x-2>0}\\{4x-5<9}\end{array}\right.$,则x=3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,已知DO⊥CO于点O若∠1:∠BOC=1:5,OE平分∠BOC.
(1)求∠1的度数?
(2)求∠2的度数?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,点B、O、C在同一直线上,OA=OB=OC=1,OA⊥BC,点P是线段AC上任意一点,连接BP交OA于点D,过点P作PF⊥OC于点F.
(1)如果CF=0.6,求OD的长度;
(2)连接DF,当CF取何值时,△DFP的面积取得最大值,并求出△DFP的面积的最大值,这时作PG⊥PD交线段BC于点G,证明:PD=PG.
(3)线段DP绕点D顺时针旋转90°,点P的对应点M刚好落在线段OC上,求FC的长度.

查看答案和解析>>

同步练习册答案