【题目】某商品现在的售价为每件28元,每天可售出24件,市场调查发现,售价每上涨1元,每天就少卖出2件.已知该商品的进价为每件20元,设该商品每天的销售量为y件,售价为每件x元(x为正整数)
(1)求y与x之间的函数关系式;
(2)该商品的售价定为每件多少元时,每天的销售利润P(元)最大,最大利润是多少元?
(3)如果物价部门规定该商品每件的售价不得高于32元,若要每天获得的利润不低于182元,请直接写出该商品的售价x(元)的取值范围是 .
【答案】
【解析】
(1)根据“现在的售价为每件28元,每天可售出24件,售价每上涨1元,每天就少卖出2件.”列出y与x的函数关系式.
(2)由利润=销售量×(售价-进价)得到函数关系式,再利用二次函数的性质求解;
(3)求出y=182时x的值,结合题意利用二次函数的性质可得每天利润不低于182元时x的取值范围.
解:(1)由题意得:y=24-2(x-28)=-2x+80,
所以y与x之间的函数关系式为y=-2x+80;
(2)由题意得:P=(x-20)y=(x-20)(-2x+80),
所以当x=30时,P取最大值200,
即商品的售价定为每件30元时,每天的销售利润P(元)最大,最大利润是200元;
(3)当y=182时,有,
解得:,
因为每件的售价不得高于32元,
故27≤x≤32时,每天获得的利润不低于182元.
科目:初中数学 来源: 题型:
【题目】如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为( )
A. 4.5 B. 4 C. 3 D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)成正比例;1.5小时后(包括1.5小时)y与x成反比例.根据图中提供的信息,解答下列问题:
(1)写出一般成人喝半斤低度白酒后,y与x之间的函数关系式及相应的自变量取值范围;
(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上21:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC于点F.
(1)求∠AFE的度数;
(3)求阴影部分的面积(结果保留π和根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的大致图象如图所示(1<x=h<2,0<xA<1),下列结论:① 2a+b>0;② abc<0;③ 若OC=2OA,则2b-ac = 4;④ 3a﹣c<0,其中正确的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中有一边长为l的正方形OABC,边OA、OC分别在x轴、y轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OBl为边作第三个正方形OBlB2C2,照此规律作下去,则点B2020的坐标为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场举办抽奖活动,规则如下:在不透明的袋子中有2个红球和2个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品,若摸到黑球,则没有奖品。
(1)如果小芳只有一次摸球机会,那么小芳获得奖品的概率为 ;
(2)如果小芳有两次摸球机会(摸出后不放回),求小芳获得2份奖品的概率。(请用“画树状图”或“列表”等方法写出分析过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).
(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1;
(2)请画出△ABC关于原点对称的△A2B2C2;
(3)请直接判断四边形CBC2B2的形状.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCO的顶点A、C分别在y轴、x轴上,以AB为弦的⊙M与x轴相切.若点A的坐标为(0,8),则圆心M的坐标为__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com