精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,各顶点的坐标分别为

1)作出关于原点成中心对称的

2)作出点关于轴的对称点若把点向右平移个单位长度后,落在的内部(不包括顶点和边界),的取值范围,

【答案】1)见解析;(2)见解析,

【解析】

1)利用关于原点对称的点的坐标特征写出A1B1C1的坐标,然后描点即可;
2)根据关于x轴对称的点的坐标特征写出C′坐标,则把点C'向右平移4个单位到C1位置,把点C'向右平移6个单位落在A1B1上,从而得到a的范围.

解:(1)如图,△A1B1C1为所作;

2C′的坐标为(-2-3),把点C'向右平移a个单位长度后落后在△A1B1C1的内部(不包括顶点和边界),则a的取值范围为:4a6

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲班56人,其中身高在160厘米以上的男同学10人,身高在160厘米以上的女同学3人,乙班80人,其中身高在160厘米以上的男同学20人,身高在160厘米以上的女同学8人.如果想在两个班的160厘米以上的女生中抽出一个作为旗手,在哪个班成功的机会大?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).

(1)以O为中心作出△ABC的中心对称图形△A1B1C1,并写出点B1坐标;

(2)以格点P为旋转中心,将△ABC按顺时针方向旋转90°,得到△A′B′C′,且使点A的对应点A′的恰好落在△A1B1C1的内部格点上(不含△A1B1C1的边上),写出点P的坐标,并画出旋转后的△A′B′C′.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.

请你根据图中信息,回答下列问题:

(1)本次共调查了  名学生.

(2)在扇形统计图中,歌曲所在扇形的圆心角等于  度.

(3)补全条形统计图(标注频数).

(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为  人.

(5)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数 yax2+x+c 的图象与 y 轴交于点 A(0,4),

x 轴交于点 BC,点 C 坐标为(8,0),连接 ABAC

(1)请直接写出二次函数 yax2+x+c 的表达式;

(2)判断ABC 的形状,并说明理由;

(3)若点 N x 轴上运动,当以点 ANC 为顶点的三角形是等腰三角形时, 请直接写出此时点 N 的坐标;

(4)若点 N 在线段 BC 上运动不与点 BC 重合,过点 N NMAC,交AB 于点 M,当AMN 面积最大时,求此时点 N 的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在RtABC中,ACB=90°,BE平分ABC,D是边AB上一点,以BD为直径的O经过点E,且交BC于点F.

(1)求证:AC是O的切线;

(2)若BF=6,O的半径为5,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面关于x的方程中:①ax2+x+2=0;②3(x-9)2-(x+1)2=1;③x+3=④x2-a=0(a为任意实数;⑤=x-1一元二次方程的个数是  

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2+2m1x+m24=0有两个不相等的实数根.

1)求m的取值范围;

2)若m为正整数,且该方程的两个根都是整数,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在平面直角坐标系xOy中,点P是抛物线上的一个动点,点A的坐标为(0,-3).

(1)如图①所示,直线l过点Q(0,-1)且平行于x轴,过P点作PB⊥l,垂足为B,连接PA,猜想PA与PB的大小关系,并证明你的猜想.

(2)请利用(1)的结论解决下列问题:

①如图②所示,设点C的坐标为(2,-5),连接PC,问PA+PC是否存在最小值?如果存在,请并求出点P的坐标;如果不存在,请说明理由.

②若过动点P和点Q(0,-1)的直线交抛物线于另一点D,且PA=4AD,求直线PQ的表达式(图③为备用图).

查看答案和解析>>

同步练习册答案