【题目】如图,直线分别交轴于A、C,点P是该直线与反比例函数在第一象限内的一个交点,PB⊥x轴于B,且S△ABP=9.
(1)求证:△AOC∽△ABP;
(2)求点P的坐标;
(3)设点R与点P在同一个反比例函数的图象上,且点R在直线PB的右侧,作RT⊥x轴于T,当△BRT与△AOC相似时,求点R的坐标.
【答案】(1)见解析;(2)P为(2,3);(3) R()或(3,0)
【解析】
(1)由一对公共角相等,一对直角相等,利用两对角相等的三角形相似即可证明;
(2)先求点A、C的坐标,再由△AOC∽△ABP,利用线段比求出BP,AB的值即可求出P点坐标;
(3)根据P点求出反比例函数解析式,设R点坐标为(x,y),根据△BRT与△AOC相似分两种情况,利用线段比联立方程组求出x,y的值,即可确定出R坐标.
(1)∵∠CAO=∠PAB,∠AOC=∠ABP=90°,
∴△AOC∽△ABP;
(2)∵直线分别交轴于A、C
∴A(-4,0) C(0,2)
∴OA=4,OC=2
∴
∵△AOC∽△ABP,
∴ ==
∴AB=6,PB=3
∴OB=2
∴P为(2,3)
(3)设反比例函数为,代入P(2,3)得,即,可设R点为(),则RT=,TB=
①要△BRT∽△ACO,则只要,即,解得
②若△BRT∽△CAO,则只要,即,解得
∴R()或(3
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.
(1)求抛物线的解析式和对称轴;
(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:
(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标.
(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标.
(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把正方形ABCD绕点C按顺时针方向旋转得到正方形此时,点落在对角线AC上,点落在CD的延长线上,交AD于点E,连接、CE.
求证:(1)≌;
(2)直线CE是线段的垂直平分线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+3与x轴交于点A(﹣1,0),B(3,0).
(1)求抛物线的解析式;
(2)过点D(0,)作x轴的平行线交抛物线于E,F两点,求EF的长;
(3)当y≤时,直接写出x的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接CD,点E在第一象限,且DE⊥DC,DE=DC.以直线AB为对称轴的抛物线过C,E两点.点M为直线AB上一动点,点N为抛物线上一动点,当以点M,N,D,E为顶点的四边形是平行四边形时点N的坐标为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图7,已知平行四边形ABCD的周长是32cm,AB︰BC=5︰3,AE⊥BC,垂足为E,AF⊥CD,垂足为F,∠EAF=2∠C.
(1)求∠C的度数;
(2)已知DF的长是关于的方程--6=0的一个根,求该方程的另一个根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB,PE与DC交于点O.
(基础探究)
(1)求证:PD=PE.
(2)求证:∠DPE=90°
(3)(应用拓展)把正方形ABCD改为菱形,其他条件不变(如图),若PE=3,则PD=________;
若∠ABC=62°,则∠DPE=________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠B=90°,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B移动,移动过程中始终保持DE∥BC,DF∥AC,
求:出发几秒时,四边形DFCE的面积为20cm2.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com