【题目】如图,将矩形ABCO放在平面直角坐标系中,其中顶点B的坐标为(5,3),E是BC边上一点,将△ABE沿AE翻折,点B刚好与OC边上的点D重合,过点E的反比例函数y=
的图象与边AB交于点F,则线段AF的长为_____.
![]()
【答案】
【解析】
根据△ABE与△ADE是全等可得BE=DE,设BE=a=DE, CE=3-a,在Rt△AOD中,AD=AB=5,AO=3,由勾股定理
,可得a的值,可求出反比例函数的表达式,可求出AF的长.
解:根据题目条件可知, △ABE与△ADE是全等的,所以BE=DE,
设BE=a=DE, CE=3-a,
在Rt△AOD中,AD=AB=5,AO=3,由勾股定理
,
即OD=
=4,
所以DC=OC-OD=1,
在Rt△DCE中, 由勾股定理
,
即
,求出a=
,CE=
,
所以E(5,
),
因为点E在反比例反函数上, 可得k =5
=
,即可y=
,
又因为点F在反比例函数上, 设F(b,3),
可得:b=
=
,即AF的长为
.
故答案:
.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,AB=AC=10,线段BC在轴上,BC=12,点B的坐标为(﹣3,0),线段AB交y轴于点E,过A作AD⊥BC于D,动点P从原点出发,以每秒3个单位的速度沿x轴向右运动,设运动的时间为t秒.
![]()
(1)点E的坐标为( , );
(2)当△BPE是等腰三角形时,求t的值;
(3)若点P运动的同时,△ABC以B为位似中心向右放大,且点C向右运动的速度为每秒2个单位,△ABC放大的同时高AD也随之放大,当以EP为直径的圆与动线段AD所在直线相切,求t的值和此时C点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DF、FG相交于点H.
(1)判断线段DE、FG的位置关系,并说明理由;
(2)连结CG,求证:四边形CBEG是正方形.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践:
如图1,
中,
,
于点
,
且
;如图2,在图1的基础上,动点
从点
出发以每秒
的速度沿线段
向点
运动,同时动点
从点
出发以相同速度沿线段
向点
运动,当其中一点到达终点时另外一点也随之停止运动,设点
运动的时间为
秒.
(1)求
的长;
(2)当
的其中一边与
平行时(
与
不重合),求
的值;
(3)点
在线段
上运动的过程中,是否存在以
为腰的
是等腰三角形?若存在,求出
的值;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.
治理杨絮一一您选哪一项?(单选)
A.减少杨树新增面积,控制杨树每年的栽种量
B.调整树种结构,逐渐更换现有杨树
C.选育无絮杨品种,并推广种植
D.对雌性杨树注射生物干扰素,避免产生飞絮
E.其他
![]()
根据以上统计图,解答下列问题:
(1)本次接受调查的市民共有 人;
(2)扇形统计图中,扇形E的圆心角度数是 ;
(3)请补全条形统计图;
(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】宜兴在“创建文明城市”行动中,某社区计划对面积为2160m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为480m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积;
(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y与x的函数表达式;
(3)若甲队每天绿化费用是0.8万元,乙队每天绿化费用为0.35万元,且甲、乙两队施工的总天数不超过26天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是圆O的直径,C、D是圆O上的点,且OC∥BD,AD分别与BC、OC相交于点E、F.则下列结论:
①AD⊥BD;②∠AOC=∠ABC;③CB平分∠ABD;④AF=DF;⑤BD=2OF.
其中一定成立的是( )
![]()
A.①③⑤ B.②③④ C.②④⑤ D.①③④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1在平面直角坐标系中,⊙O1与x轴切于A(﹣3,0)与y轴交于B、C两点,BC=8,连AB.
(1)求证:∠ABO1=∠ABO;
(2)求AB的长;
(3)如图2,过A、B两点作⊙O2与y轴的正半轴交于M,与O1B的延长线交于N,当⊙O2的大小变化时,得出下列两个结论:①BM﹣BN的值不变;②BM+BN的值不变.其中有且只有一个结论正确,请判断正确结论并证明.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知四边形
,
,
与
互补,以点
为顶点作一个角,角的两边分别交线段
,
于点
,
,且
,连接
,试探究:线段
,
,
之间的数量关系.
![]()
(1)如图(1),当
时,
,
,
之间的数量关系为___________.
(2)在图(2)的条件下(即不存在
),线段
,
,
之间的数量关系是否仍然成立?若成立,请完成证明;若不成立,请说明理由.
(3)如图(3),在腰长为
的等腰直角三角形
中,
,
,
均在边
上,且
,若
,求
的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com