【题目】如图,在平面直角坐标系中,AB=AC=10,线段BC在轴上,BC=12,点B的坐标为(﹣3,0),线段AB交y轴于点E,过A作AD⊥BC于D,动点P从原点出发,以每秒3个单位的速度沿x轴向右运动,设运动的时间为t秒.
(1)点E的坐标为( , );
(2)当△BPE是等腰三角形时,求t的值;
(3)若点P运动的同时,△ABC以B为位似中心向右放大,且点C向右运动的速度为每秒2个单位,△ABC放大的同时高AD也随之放大,当以EP为直径的圆与动线段AD所在直线相切,求t的值和此时C点的坐标.
【答案】(1)E(0, 4);(2)t=或t=1或t=;(3)当t=1, C(11,0)
【解析】
(1) 首先求出直线AB的解析式, 即可得出结论;
(2) 先求出BE=5, 进而分别利用①当BE=BP时,②当EB=EP时,③当PB=PE时, 得出的值即
可;
(3) 首先得出△PGF∽△POE, 再利用勾股定理得, 进而求出t的值以及C点坐标.
解:(1)∵AB=AC,AD⊥BC,
∴BD=CD=6,
∵AB=10,
∴AD=8,
∴A(3,8),
设直线AB的解析式为:y=kx+b,则,
解得:,
∴直线AB的解析式为:y=x+4,
∴E(0,4),
故答案为:0,4;
(2)∵B(﹣3,0),E(0,4)
∴BE=5,
当△BPE是等腰三角形有三种情况:
①当BE=BP时,3+3t=5,解得:t=;
②当EB=EP时,3t=3,解得:t=1;
③当PB=PE时,
∵PB=PE,AB=AC,∠ABC=∠PBE,
∴∠PEB=∠ACB=∠ABC,
∴△PBE∽△ABC,
∴=,
∴=,解得:t=,
综上:t=或t=1或t=;
(3)由题意得:C(9+2t,0),
∴BC=12+2t,BD=CD=6+t,OD=3+t,
设F为EP的中点,连接OF,作FH⊥AD,FG⊥OP,
∵FG∥EO,
∴△PGF∽△POE,
∴PG=OG=t,FG=EO=2,
∴F(t,2),
∴FH=GD=OD﹣OG=3+t﹣t=3﹣t,
∵⊙F与动线段AD所在直线相切,FH=EP=3﹣t,
在Rt△EOP中:EP2=OP2+EO2
∴4(3﹣t)2=(3t)2+16
解得:t1=1,t2=﹣(舍去),
∴当t=1时,⊙F与动线段AD所在直线相切,此时C(11,0).
科目:初中数学 来源: 题型:
【题目】如图,直线在平面直角坐标系中与轴交于点A,点B(-3,3)也在直线上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C也在直线上.
(1)求点C的坐标和直线的解析式;
(2)已知直线:经过点B,与轴交于点E,求△ABE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=mx2﹣2mx﹣3m(m>0)与x轴交于A、B两点,与y轴交于点C,点M为抛物线的顶点,且OC=OB.
(1)求抛物线的解析式.
(2)若抛物线上有一点P,连PC交线段BM于Q点,且S△BPQ=S△CMQ,求P点的坐标.
(3)把抛物线沿x轴正半轴平移n个单位,使平移后的抛物线交直线BC于E、F两点,且E、F关于点B对称,求n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于实数a,b,我们可以用min{a,b}表示a,b两数中较小的数,例如min{3,-1}=-1,min{2,2}=2. 类似地,若函数y1、y2都是x的函数,则y=min{y1, y2}表示函数y1和y2的“取小函数”.
(1)设y1=x,y2=,则函数y=min{x, }的图像应该是 中的实线部分.
(2)请在下图中用粗实线描出函数y=min{(x-2)2, (x+2)2}的图像,并写出该图像的三条不同性质:
① ;
② ;
③ ;
(3)函数y=min{(x-4)2, (x+2)2}的图像关于 对称.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,分别以△ABC的边AB,AC向外作两个等边三角形△ABD,△ACE.连接BE、CD交点F,连接AF.
(1)求证:△ACD≌△AEB;
(2)求证:AF+BF+CF=CD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲乙两人同时开车从A地出发,沿一条笔直的公路匀速前往相距400千米的B地,1小时后,甲发现有物品落在A地,于是立即按原速返回A地取物品,取到物品后立即提速25%继续开往B地(所有掉头和取物品的时间忽略不计),甲乙两人间的距离y千米与甲开车行驶的时间x小时之间的部分函数图象如图所示,当甲到达B地时,乙离B地的距离是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学习小组在研究函数y=x3﹣2x的图象与性质时,已列表、描点并画出了图象的一部分.
x | … | ﹣4 | ﹣3.5 | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 3.5 | 4 | … |
y | … | ﹣ | ﹣ | 0 | ﹣ | ﹣ | ﹣ | … |
(1)请补全函数图象;
(2)方程x3﹣2x=﹣2实数根的个数为 ;
(3)观察图象,写出该函数的两条性质.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一只不透明的布袋中装有红球 3 个、黄球 1 个,这些球除颜色外都相同,均匀摇匀.
(1)从布袋中一次摸出 1 个球,计算“摸出的球恰是黄球”的概率;
(2)从布袋中一次摸出 2 个球,计算“摸出的球恰是一红一黄”的概率(用“ 画树状图”或“列表”的方法写出计算过程).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形ABCO放在平面直角坐标系中,其中顶点B的坐标为(5,3),E是BC边上一点,将△ABE沿AE翻折,点B刚好与OC边上的点D重合,过点E的反比例函数y=的图象与边AB交于点F,则线段AF的长为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com