精英家教网 > 初中数学 > 题目详情

【题目】如图,点O是边长为4 的等边△ABC的内心,将△OBC绕点O逆时针旋转30°得到△OB1C1 , B1C1交BC于点D,B1C1交AC于点E,则DE=

【答案】6﹣2
【解析】解:令OB1与BC的交点为F,B1C1与AC的交点为M,过点F作FN⊥OB于点N,如图所示.
∵将△OBC绕点O逆时针旋转30°得到△OB1C1
∴∠BOF=30°,
∵点O是边长为4 的等边△ABC的内心,
∴∠OBF=30°,OB= AB=4,
∴△FOB为等腰三角形,BN= OB=2,
∴BF= = =OF.
∵∠OBF=∠OB1D,∠BFO=∠B1FD,
∴△BFO∽△B1FD,

∵B1F=OB1﹣OF=4﹣
∴B1D=4 ﹣4.
在△BFO和△CMO中,有
∴△BFO≌△CMO(ASA),
∴OM=BF= ,C1M=4﹣
在△C1ME中,∠C1ME=∠MOC+∠MCO=60°,∠C1=30°,
∴∠C1EM=90°,
∴C1E=C1Msin∠C1ME=(4﹣ )× =2 ﹣2.
∴DE=B1C1﹣B1D﹣C1E=4 ﹣(4 ﹣4)﹣(2 ﹣2)=6﹣2
所以答案是:6﹣2
【考点精析】通过灵活运用等边三角形的性质和三角形的内切圆与内心,掌握等边三角形的三个角都相等并且每个角都是60°;三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知平面直角坐标系xOy(如图),直线 y=x+b经过第一、二、三象限,与y轴交于点B,点A(2,t)在直线y=x+b上,连结AO,△AOB的面积等于1.

(1)求b的值;

(2)如果反比例函数y= (k是常量,k≠0)的图象经过点A,求这个反比例函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知abc分别是ABC的三边长且满足2a4+2b4+c4=2a2c2+2b2c2ABC( )

A. 等腰三角形 B. 等腰直角三角形

C. 直角三角形 D. 等腰三角形或直角三角形

【答案】B

【解析】解析:∵2a4+2b4+c4=2a2c2+2b2c24a4-4a2c2+c4+4b4-4b2c2+c4=0

2a2-c22+2b2-c22=02a2-c2=02b2-c2=0

c=2ac=2b

a=b,且a2+b2=c2

∴△ABC为等腰直角三角形.

故选B.

型】单选题
束】
11

【题目】将图1中阴影部分的小长方形变换到图2的位置,你能根据两个图形的面积关系得到的数学公式是_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABEF,BCCD于点C,ABC=30°,DEF=45°,则∠CDE等于(  )

A. 105° B. 75° C. 135° D. 115°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一条直线上任取一点A,截取AB=20 cm,再截取AC=18 cm,M,N分别是AB,AC的中点,求M,N两点之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在数轴上点 A 表示的有理数为﹣4,点 B 表示的有理数为 6,点 P A 出发以每秒 2 个单位长度的速度在数轴上沿由 A B 方向运动,当点 P 达点 B 后立即返回,仍然以每秒 2 个单位长度的速度运动至点 A 停止运动.设 运动时间为 t(单位:秒).

1)求 t=2 时点 P 表示的有理数;

2)求点 P AB 的中点时 t 的值;

3)在点 P 由点 A 到点 B 的运动过程中,求点 P 与点 A 的距离(用含 t 的代数式表示);

4在点 P 由点 B 到点 A 的返回过程中 P 表示的有理数是多少(用含 t 代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以菱形ABCD对角线交点为坐标原点,建立平面直角坐标系,A、B两点的坐标分别为(﹣2 ,0)、(0,﹣ ),直线DE⊥DC交AC于E,动点P从点A出发,以每秒2个单位的速度沿着A→D→C的路线向终点C匀速运动,设△PDE的面积为S(S≠0),点P的运动时间为t秒.

(1)求直线DE的解析式;
(2)求S与t之间的函数关系式,并写出自变量t的取值范围;
(3)当t为何值时,∠EPD+∠DCB=90°?并求出此时直线BP与直线AC所夹锐角的正切值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在 ABC 中,∠C=90°,DBBC 于点 ,分别以点 D 和点 为圆心,以大于 的长为半径作弧,两弧相交于点 E 和点 ,作直线 EF,延长 AB 于点 ,连接 DG,下面是说明 ∠A=∠D 的说理过程,请把下面的说理过程补充完整:

因为 DBBC(已知),

所以 DBC=90°( )

因为 C=90°(已知),

所以 DBC=C(等量代换),

所以 DBAC ( )

所以 (两直线平行,同位角相等);

由作图法可知:直线 EF 是线段 DB ( )

所以 GD=GB,线段 (上的点到线段两端点的距离相等),

所以 ( ) ,因为 A=1(已知),

所以 A=D(等量代换).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(10分)如图,在矩形ABCD中,E,F为BC上两点,且BE=CF,连接AF,DE交于点O.

求证:(1)△ABF≌△DCE;

(2)△AOD是等腰三角形.

查看答案和解析>>

同步练习册答案