精英家教网 > 初中数学 > 题目详情

【题目】如图,在 ABC 中,∠C=90°,DBBC 于点 ,分别以点 D 和点 为圆心,以大于 的长为半径作弧,两弧相交于点 E 和点 ,作直线 EF,延长 AB 于点 ,连接 DG,下面是说明 ∠A=∠D 的说理过程,请把下面的说理过程补充完整:

因为 DBBC(已知),

所以 DBC=90°( )

因为 C=90°(已知),

所以 DBC=C(等量代换),

所以 DBAC ( )

所以 (两直线平行,同位角相等);

由作图法可知:直线 EF 是线段 DB ( )

所以 GD=GB,线段 (上的点到线段两端点的距离相等),

所以 ( ) ,因为 A=1(已知),

所以 A=D(等量代换).

【答案】垂直的定义;内错角相等,两直线平行;∠A;∠1;垂直平分线;垂直平分线;∠1;∠D;等边对等角

【解析】先利用平行线的判定方法证明DBAC,则根据平行线的性质得到∠A=1;由作图法可知直线EF是线段DB的垂直平分线,则GD=GB,所以∠1=D,然后利用等两代换得到∠A=D.

因为DBBC(已知)

所以∠DBC=90°(垂直的定义)①

因为∠C=90°(已知)

所以∠DBC=C(等量代换)

所以DBAC(内错角相等,两直线平行)②

所以∠A=1③(两直线平行,同位角相等);

由作图法可知:直线EF是线段DB的(垂直平分线)④

所以GD=GB(线段垂直平分线上的点到线段两端点的距离相等)⑤

所以∠1=D(等边对等角)⑥

因为∠A=1(已知)

所以∠A=D(等量代换).

故答案为垂直的定义;内错角相等,两直线平行;∠A,1;垂直平分线;垂直平分线;∠1,D;等边对等角.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知一次函数y= 过点A(2,4),B(0,3)、题目中的矩形部分是一段因墨水污染而无法辨认的文字.

(1)根据现有的信息,请求出题中的一次函数的解析式.

(2)根据关系式画出这个函数图象.

(3)过点B能不能画出一直线BCABO(O为坐标原点)分成面积比为1:2的两部分?如能,可以画出几条,并求出其中一条直线所对应的函数关系式,其它的直接写出函数关系式;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O是边长为4 的等边△ABC的内心,将△OBC绕点O逆时针旋转30°得到△OB1C1 , B1C1交BC于点D,B1C1交AC于点E,则DE=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了切实关注、关爱贫困家庭学生,某校对全校各班贫困家庭学生的人数情况进行了统计,以便国家精准扶贫政策有效落实.统计发现班上贫困家庭学生人数分别有2名、3名、4名、5名、6名,共五种情况.并将其制成了如下两幅不完整的统计图:
(1)求该校一共有多少个班?并将条形图补充完整;
(2)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表法或树状图的方法,求出被选中的两名学生来自同一班级的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,下列n(n为正整数)个关于x的一元二次方程: ①x2﹣1=0,②x2+x﹣2=0,③x2+2x﹣3=0,④x2+3x﹣4=0,…,,…

(1)上述一元二次方程的解为①________,②________,③________,④________.

(2)猜想:第n个方程为________,其解为________.

(3)请你指出这n个方程的根有什么共同的特点(写出一条即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,AC为对角线,点EAC上一点,连接EBED.

(1)求证:△BEC≌△DEC

(2)延长BEAD于点F,当∠BED120°时,求∠EFD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果一个多边形的各边都相等,且各内角也都相等,那么这个多边形就叫做正多边形,如图,就是一组正多边形,观察每个正多边形中的变化情况,解答下列问题.

(1)将下面的表格补充完整:

(2)根据规律,是否存在一个正n边形,使其中的?若存在,直接写出的值;若不存在,请说明理由.

(3)根据规律,是否存在一个正n边形,使其中的?若存在,直接写出的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 在平面直角坐标系中的位置如图所示.

(1)作关于点成中心对称的 .

(2)将向右平移4个单位,作出平移后的.

(3)在轴上求作一点,使的值最小

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】按要求完成下列证明

已知:如图,ABCD直线AECD于点CBAC+CDF=180°.

求证:AEDF.

证明: ABCD____________________________

∴∠BAC=DCE__________________________________________________________________________.

BAC+CDF=180°(已知),

____________ +CDF=180°____________________________________.

AEDF______________________________________________________________________.

查看答案和解析>>

同步练习册答案