精英家教网 > 初中数学 > 题目详情
17.如图,在△ABC中,BD平分∠ABC,∠A=2∠C.
(1)若∠C=38°,则∠ABD=33°;
(2)求证:BC=AB+AD;
(3)求证:BC2=AB2+AB•AC.

分析 (1)在BC上截取BE=AB,利用“边角边”证明△ABD和△BED全等,根据全等三角形对应边相等可得DE=AD,全等三角形对应角相等可得∠AED=∠A,然后求出∠C=∠CDE,根据等角对等边可得CE=DE,然后结合图形整理即可得证;
(2)由(1)知:△ABD≌△BED,根据全等三角形对应边相等可得DE=AD,全等三角形对应角相等可得∠AED=∠A,然后求出∠C=∠CDE,根据等角对等边可得CE=DE,等量代换得到EC=AD,即得答案BC=BE+EC=AB+AD;
 (3)为了把∠A=2∠C转化成两个角相等的条件,可以构造辅助线:在AC上取BF=BA,连接AE,根据线段的垂直平分线的性质以及三角形的内角和定理的推论能够证明AB=F.再根据勾股定理表示出BC2,AB2.再运用代数中的公式进行计算就可证明.

解答 解:(1)在BC上截取BE=BA,如图1,
在△ABD和△BED中,
$\left\{\begin{array}{l}{BE=BA}\\{∠ABD=∠EBD}\\{BD=BD}\end{array}\right.$,
∴△ABD≌△BED,
∴∠BED=∠A,
∵∠C=38°,∠A=2∠C,
∴∠A=76°,
∴∠ABC=180°-∠C-∠A=66°,
BD平分∠ABC,
∴∠ABD=33°;

(2)由(1)知:△ABD≌△BED,
∴BE=AB,DE=AD,∠BED=∠A,
又∵∠A=2∠C,
∴∠BED=∠C+∠EDC=2∠C,
∴∠EDC=∠C,
∴ED=EC,
∴EC=AD
∴BC=BE+EC=AB+AD;

(3)如图2,过B作BG⊥AC于G,
以B为圆心,BA长为半径画弧,交AC于F,
则BF=BA,
在Rt△ABG和Rt△GBG中,
$\left\{\begin{array}{l}{BA=BF}\\{AG=AG}\end{array}\right.$,
∴Rt△ABG≌Rt△GBG,
∴AG=FG,
∴∠BFA=∠A,
∵∠A=2∠C,
∴∠BFA=∠FBC+∠C=2∠C,
∴∠FBC=∠C,
∴FB=FC,
FC=AB,
在Rt△ABG和Rt△BCG中,
BC2=BG2+CG2
AB2=BG2+AG2
∴BC2-AB2=CG2-AG2=(CG+AG)(CG-AG)
=AC(CG-GF)=AC•FC
=AC•AB.

点评 本题考查了全等三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,等角对等边的性质,作辅助线构造出全等三角形和等腰三角形是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.如图,用同样规格黑白两色的正方形瓷砖铺设长方形地面,请观察下列图形,并解答有关问题:

(1)在第n个图中,第一横行共n+3 块瓷砖,第一竖列共有n+2 块瓷砖;(均用含n的代数式表示)铺设地面所用瓷砖的总块数为n2+5n+6或(n+2)(n+3);(用含n的代数式表示,n表示第n个图形)
(2)上述铺设方案,铺一块这样的长方形地面共用了506块瓷砖,求此时n的值;
(3)黑瓷砖每块4元,白瓷砖每块3元,在问题(2)中,共需要花多少钱购买瓷砖?
(4)是否存在黑瓷砖与白瓷砖块数相等的情形?请通过计算加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.在△ABC中,∠B=40°,∠C=60°,则∠B与∠C的平分线相交夹角(只考虑小于直角的夹角)度数为(  )
A.50°B.100°C.130°D.150°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,己知AB∥DC,且AB=CD,BF=DE,说明AE∥CF,AF∥CE的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.某仓库调拨一批物资,调进物资共用8小时,调进物资4小时后同时开始调出物资(调进与调出物资的速度均保持不变).该仓库库存物资w(吨)与时间t(小时)之间的关系如图所示,求这批物资从开始调进到全部调出所需要的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.有甲、乙两家通迅公司,甲公司每月通话的收费标准如图所示;乙公司每月通话收费标准如表所示:
月租费通话费
25元0.15元/分钟
(1)通话时间为多少时,两家公司的收费是相同的?
(2)李女士想买一部手机,如果她的月通话时间不超过100分钟,她选择哪家通讯公司更合算?如果她的月通话时间超过100分钟,又将如何选择?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,抛物线C1:y=x2+2x-3的顶点为P,将该抛物线绕点A(a,0)(a>0)旋转180°后得到的抛物线C2,抛物线C2的顶点为Q,与x轴的交点是B、C,点B在点C的右侧.若∠PQB=90°,则a=7.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,△ABC、△ADE为等腰直角三角形,∠ACB=∠AED=90°.连接BD,取BD中点F,连接CF,EF,CE.求证:△CEF为等腰直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.分解因式:9x3-18x2+9x=9x(x-1)2

查看答案和解析>>

同步练习册答案