【题目】已知某二次函数图象的顶点坐标为(1,-4),且经过点C(0,-3)
(1)求这个二次函数的表达式;
(2)求图象与x轴交点A、B两点的坐标(A在点B的左边)及△ABC的面积.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴交于A,B两点(点A在原点左侧,点B在原点右侧),与y轴交于点C,已知OA=1,OC=OB.
(1)求抛物线的解析式;
(2)若D(2,m)在该抛物线上,连接CD,DB,求四边形OCDB 的面积;
(3)设E是该抛物线上位于对称轴右侧的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点E作EH⊥x轴于点H,再过点F作FG⊥x轴于点G,得到矩形EFGH.在点E运动的过程中,当矩形EFGH为正方形时,求出该正方形的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线与轴相交于、两点(点在点的右侧),与轴相交于点,对称轴与轴相交于点,与相交于点.
(1)点是线段上方抛物线上一点,过点作交抛物线的对称轴于点,当面积最大时,点、在轴上(点在点的上方),,点在直线上,求的最小值.
(2)点为中点,轴于,连接,将沿翻折得△,如图所示,再将△沿直线平移,记平移中的△为△,在平移过程中,直线与轴交于点,则是否存在这样的点,使得△为等腰三角形?若存在,求出点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为4的等边三角形,以O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为( )
A.(-2,2)B.(-2,4)C.(-2,2)D.(2,2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数 的图象的一部分,对称轴是直线 . 以下四个判断:① ;② ;③不等式 的解集是 ;④若( ,y1),(5,y2)是抛物线上的两点,则y1<y2。其中正确的是( )
A.①②B.①④C.①③D.②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,已知抛物线经过坐标原点O和 轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在 轴的负半轴、 轴的正半轴上,且AD=2,AB=3.
(1)求该抛物线的函数关系式;
(2)如图1,将矩形ABCD以每秒1个单位长度的速度从所示的位置沿 轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为 秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).
①直接写出P点坐标。(用含t的代数式表示)
②当t为多少时,P、N两点重合?
③设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,∠A=20°.将△ABC绕点C按逆时针方向旋转得△A′B′C,且点B在A′B′ 上,CA′ 交AB于点D,则∠BDC的度数为( )
A. 40°B. 50°C. 60°D. 70°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图等腰三角形的顶角=45°,以AB为直径的半圆O与BC,AC相较于点D,E两点,则弧AE所对的圆心角的度数为( )
A.40°B.50°
C.90°D.100°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个长方体木箱沿斜面下滑,当木箱下滑至如图所示位置时,AB=2m,已知木箱高BE=1m,斜面坡角为32°.(参考数据:sin32°=0.5299,cos32°=0.8480,tan32°=0.6249)
(1)求点B到AC的距离.(精确到0.1m)
(2)求木箱端点E距地面AC的高度.(精确到0.1m)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com