精英家教网 > 初中数学 > 题目详情

【题目】某市为争创全国文明卫生城,2008年市政府对市区绿化工程投入的资金是2000万元,2010年投入的资金是2420万元,且从2008年到2010年,两年间每年投入资金的年平均增长率相同.

(1)求该市对市区绿化工程投入资金的年平均增长率;

(2)若投入资金的年平均增长率不变,那么该市在2012年需投入多少万元?

【答案】(1)该市对市区绿化工程投入资金的年平均增长率为10%;(2)2012年需投入资金2928.2万元.

【解析】分析:(1)因为年平均增长率相同,所以可设年平均增长率为,则;(2)需投入万元.

解:(1)设该市对市区绿化工程投入资金的年平均增长率为

根据题意得,

解得(舍去).

答:该市对市区绿化工程投入资金的年平均增长率为10﹪.

22012年需投入资金:(万元).

答:2012年需投入资金2 928.2万元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下图是昌平区20191月份每天的最低和最高气温,观察此图,下列说法正确的是( )

A.1月份中,最高气温为10℃,最低气温为-2℃

B.10号至16号的气温中,每天温差最小为7℃

C.每天的最高气温均高于0℃,最低气温均低于0℃

D.每天的最高气温与最低气温都是具有相反意义的量

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=24厘米,BC=10厘米,点PA开始沿AB边以4厘米/秒的速度运动,点QC开始沿CD2厘米/秒的速度移动,如果点PQ分别从AC同时出发,当其中一点到达终点时,另一点也随之停止运动,设运动时间为t秒.

1)当t=2秒时,求PQ两点之间的距离;

2t为何值时,线段AQDP互相平分?

3t为何值时,四边形APQD的面积为矩形面积的

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点DDH⊥AC于点H,连接DE交线段OA于点F.

(1)求证:DH是圆O的切线;

(2)若,求证:A为EH的中点.

(3)若EA=EF=1,求圆O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在一张长方形纸条上画一条数轴.

1)若折叠纸条使数轴上表示﹣1的点与表示5的点重合,则折痕与数轴的交点表示的数是   

2)如果数轴上两点之间的距离为6+m2m为常数),这两点经过(1)的折叠方式后折痕与数轴的交点与(1)中的交点相同,求左边这个点表示的数;(用含m的代数式表示)

3)如图2,若将此纸条沿AB处剪开,将中间的一段纸条对折,使其左右两端重合,这样连续对折n次后,再将其展开,求最右端的折痕与数轴的交点表示的数.(用含n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣6,点B表示8,点C表示16,我们称点A和点C在数轴上相距22个长度单位.动点P从点A出发,以1单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速:同时,动点Q从点C出发,以2单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.

1)动点P从点A运动至C点需要多少时间?

2PQ两点相遇时,求出相遇点M所对应的数是多少;

3)求当t为何值时,PO两点在数轴上相距的长度与QB两点在数轴上相距的长度相等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直角三角形ABC中,∠C=90°,将△ABC绕点A逆时针旋转至△AED,使点C的对应点D恰好落在边AB上,E为点B的对应点.设∠BACα,则∠BED______.(用含α的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,∠B=90°AB=16cmBC=12cmPQABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.

1)出发2秒后,求PQ的长.

2)当点Q在边BC上运动时,出发几秒钟后,PQB能形成等腰三角形?

3)当点Q在边CA上运动时,求能使BCQ成为等腰三角形的运动时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC2AOC,将一直角三角板的直角顶点放在点O处,边OM在射线OB上,另一边ON在直线AB的下方.

1)将图1中的三角板绕点O按逆时针方向旋转45°至图2的位置,此时∠MOC   °;

2)将图1中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;

3)在上述直角三角板从图1逆时针旋转一周的过程中,若三角板绕点O5°每秒的速度旋转,当直角三角板的直角边ON所在直线恰好平分∠AOC时,求此时三角板绕点O的运动时间t的值.

查看答案和解析>>

同步练习册答案