【题目】如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE∥OC交y轴于点E,已知AO=m,BO=n,且m、n满足n2﹣8n+16+|n﹣2m|=0.
(1)求A、B两点的坐标;
(2)若点D为AB中点,求OE的长;
(3)如图2,若点P(x,﹣2x+4)为直线AB在x轴下方的一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P的坐标.
【答案】(1)点A为(2,0),点B为(0,4);(2)OE=1;(3)点P为(4,﹣4)
【解析】
(1)根据非负数的性质,得出方程(n﹣4)2+|n﹣2m|=0,求得m=2,n=4,即可得到A、B两点的坐标;
(2)延长DE交x轴于点F,延长FD到点G,使得DG=DF,连接BG,构造全等三角形,再根据BG=BE=AF列出关于x的方程,即可求得OE的长;
(3)分别过点F、P作FM⊥y轴于点M,PN⊥y轴于点N,设点E为(0,m),构造全等三角形,再根据F点的横坐标与纵坐标相等,得出方程m+2x﹣4=m+x,解得:x=4,即可得到点P为(4,-4).
解:(1)∵n2﹣8n+16+|n﹣2m|=0,
∴(n﹣4)2+|n﹣2m|=0,
∵(n﹣4)2≥0,|n﹣2m|≥0,
∴(n﹣4)2=0,|n﹣2m|=0,
∴m=2,n=4,
∴点A为(2,0),点B为(0,4);
(2)延长DE交x轴于点F,延长FD到点G,使得DG=DF,连接BG,
设OE=x,
∵OC平分∠AOB,
∴∠BOC=∠AOC=45°,
∵DE∥OC,
∴∠EFO=∠FEO=∠BEG=∠BOC=∠AOC=45°,
∴OE=OF=x,
在△ADF和△BDG中 ,
∴△ADF≌△BDG(SAS),
∴BG=AF=2+x,∠G=∠AFE=45°,
∴∠G=∠BEG=45°
∴BG=BE=4﹣x
∴4﹣x=2+x,
解得:x=1,∴OE=1;
(3)分别过点F、P作FM⊥y轴于点M,PN⊥y轴于点N,
设点E为(0,m),
∵点P的坐标为(x,﹣2x+4),
∴PN=x,EN=m+2x﹣4,
∵∠PEF=90°,
∴∠PEN+∠FEM=90°,
∵FM⊥y轴,
∴∠MFE+∠FEM=90°,
∴∠PEN=∠MFE,
在△EFM和△PEN中, ,
∴△EFM≌△PEN(AAS),
∴ME=NP=x,FM=EN=m+2x﹣4,
∴点F为(m+2x4,m+x),
∵F点的横坐标与纵坐标相等,
∴m+2x﹣4=m+x,
解得:x=4,
∴点P为(4,﹣4).
科目:初中数学 来源: 题型:
【题目】《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从图中的二次函数y=ax2+bx+c图象中,观察得出了下面的五条信息:
①b>0 ②c=0;③函数的最小值为﹣3;④a﹣b+c>0;⑤当x1<x2<2时,y1>y2.
(1)你认为其中正确的有哪几个?(写出编号)
(2)根据正确的条件请求出函数解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连接AP并延长AP交CD于F点,连接CP并延长CP交AD于Q点.给出以下结论:①四边形AECF为平行四边形;②∠PBA=∠APQ;③△FPC为等腰三角形;④△APB≌△EPC;其中正确结论的个数为( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两车同时从地出发前往地,其中甲车选择有高架的路线,全程共,乙车选择没有高架的路线,全程共.甲车行驶的平均速度比乙车行驶的平均速度每小时快千米,乙车到达地花费的时间是甲车的倍.问甲、乙两车行驶的平均速度分别是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数的图像与轴交于点,一次函数的图像与轴交于点,且与轴以及一次函数的图像分别交于点、,点的坐标为.
(1)关于、的方程组的解为______________.
(2)关于的不等式的解集为__________________.
(3)求四边形的面积;
(4)在轴上是否存在点,使得以点,,为顶点的三角形是直角三角形?若存在,求出点的坐标:若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E做直线l∥BC.
(1)判断直线l与⊙O的位置关系,并说明理由;
(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;
(3)在(2)的条件下,若DE=4,DF=3,求AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】据媒体报道,在第52届国际速录大赛中我国速录选手获得了7枚金牌、7枚银牌和4枚铜牌,在国际舞台上展示了指尖上的“中国速度”.看到这则新闻后,学生小明和小海很受鼓舞,决定利用业余时间练习打字.经过一段时间的努力,他们的录入速度有了明显的提高.经测试现在小明打140个字所用时间与小海打175个字所用时间相同,小明平均每分钟比小海少打15个字.请求出小明平均每分钟打字的个数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com